
Overview

• Two Titles

Theory of Languages
Foundations of Programming

• Theory is needed if we want to understand foundations.
• This course will cover the essential theory, and will apply it as well.
• 3 Streams:

• Theory: Syntax and Semantics of Programming Languages
• Applications: Core languages which illustrate essential concepts:

Funnel + Oz.
• Practice: Programming Examples, Interpreters.

1



Goals of this course

• Better understanding of programming languages:

• Which concepts are essential?
• Which are ephemeral?
• How can fundamental concepts encode derived ones?

• Better understanding of programming:

• Fundamental composition principles
• Language as a means of abstraction
• Interpreters and compilers

• Better understanding of definitions of programming languages

• Which things can/should be formalized?
• What techniques are available for formalization?

⇒ Increased competence as a programmer, language implementer, library
and language designer.

2



Language Definitions

• A programming language is defined by its syntax and semantics.
• Language: A set of strings over a given alphabet.
• Syntax: The set of rules which determines whether a given string is a

member of the language (i.e. is legal according to the rules of the
language).

• Syntax is usually split into

• Context-free syntax – what can be described by a context-free
grammar.

• Context-dependent syntax – what can’t. Examples: scope rules,
type systems.

• Semantics tells us what the meaning of a legal program string is.

We have covered context-free syntax in Compiler Construction.

This course will be mainly concerned with semantics and also with
context-dependent syntax.

3



Semantics

There are several different ways of assigning meaning to programs.

• Operational – by specifying evaluation rules. Two main flavors:

• Abstract machine: Translate programs into an hypothetical
machine and explain translation rules, and machine execution.

• Rewrite or transition system: Rewrite the program itself.
• Denotational – by specifying a translation from program strings to

some other domain, which is well understood.

Example: Functions in a program → mathematical functions.
• Axiomatic – by stating laws that programs in the language satisfy.

We will learn about

• operational semantics of functional and concurrent programming
• axiomatic semantics of a simple imperative language
• semantics by translation of derived constructs into our core languages.

4



Programming Paradigms

This course will cover a large spectrum of programming paradigms

• Functional programming
• Imperative programming
• Object-oriented programming
• Concurrency
• Logic programming
• Constraint programming

The first 4 styles will all be expressed as functional nets, using our Funnel
notation.

The last 2 styles will be presented using Oz.

5



Organization of the Course

• 6 hours per week.
• Roughly 2 hours each for theory, programming language applications,

and practical work.
• Proposed times:

Tuesdays 10.15 – 1

Thursdays 1.15 – 4
• Tuesdays: Theory and applications in IN 010
• Thursdays: Applications and programming in IN 010 + ???

6



Material

• Web site: http://lampwww.epfl.ch/courses/fondements00/.

This contains pointers to everything you need, including preprints of
the transparencies (but they might be uploaded late because we are
developing this course ”just in time”.)

• Papers: We’ll add references to the site as needed. For the first part of
the course there are two papers you should read:

• Programming with Functional Nets. M. Odersky. Gives an
overview of our programming notation and the concepts behind it.

• Functional Nets. M. Odersky. Gives a more thorough introduction
to the notation and its theoretical foundations in join calculus.

Both are available by http from our resources page (which is linked
into root)

7



• Books: No book covers the course as a whole, but here are three books
I recommend:

• Structure and Interpretation of Computer Programs. Harold Jay
Abelson and Gerald J. Sussmann with Julie Sussmann. MIT
Press, 2nd Edition 1996.

• Essentials of Programming Languages. David Friedman, Mitchell
Wand and Christopher Haynes, Wand. MIT Press. 1992.

• The Structure of Typed Programming Languages. David
Schmidt. MIT Press 1994.

If you want to read just one book, go with the first, it’s worth it.

8



Questions?

9


