
Lists in Funnel

• Lists are sequences of values
• They are one of the most important data type for functional

programming
• A lot of functional programming languages have lists as a built-in data

type
• In Funnel, lists are not primitive and have to be encoded explicitly
• Funnel offers three ways for encoding compound data types

• tupels
• functions
• records

1

Implementing Lists with Records

• Lists are represented as linked data structures
• We need two constructors:

• Nil, for creating empty lists
• Cons(x, xs), for creating a list with head x and tail xs

• We want every list to have the functions isEmpty, head and tail:
def Nil = {

def isEmpty = true
def head = error ”Nil.head”
def tail = error ”Nil.tail”

}
def Cons(x, xs) = {

def isEmpty = false
def head = x
def tail = xs

}

2

Creating Lists

Here’s a transcript of a funny session:

> val l = Cons(1, Cons(2, Cons(3, Nil)))
’val l = (<record id=10, adr=129, type=(isEmpty, head, tail)>)’
> (l.head, l.tail.head)
(1, 2)
> val l’ = l.tail.tail
’val l’ = (<record id=10, adr=129, type=(isEmpty, head, tail)>)’
> l’.head
3
> l’.tail.head
user abortion: ”Nil.head”

3

Clients of the List Abstraction

Functions operating on lists use

• isEmpty for distinguishing empty lists from non-empty lists,and
• the projections head and tail for accessing the first element and the

rest of the list for non-empty lists

Let’s write a function length that computes the length of a given list:

def length(xs) = if (xs.isEmpty) 0 else 1 + length(xs.tail)

The implementation of append, which concatenates two lists is similar:

def append(xs, ys) = if (xs.isEmpty) ys
else Cons(xs.head, append(xs.tail, ys))

4

Example

Suppose we want to sort a list of numbers into ascending order:

• One way to sort the list [7, 3, 9, 2] is to sort the tail [3, 9, 2] to
give [2, 3, 9].
• It is then a matter of inserting the head 7 in the right place to give

the result [2, 3, 7, 9]

This idea describes Insertion Sort:
def isort(xs) = if (xs.isEmpty) Nil

else ins(xs.head, isort(xs.tail))

How does an implementation of the missing function ins look like?

5

Patterns of Computation

• The examples show that functions over lists often have similar
structures
• We can identify several patterns of computation like

• Transform every element of a list in some way
• Combine the elements of a list using some operator

• Functional programming languages enable programmers to write
general functions which implement patterns like this
• These functions are higher-order functions which get a transformation

or an operator as one argument

6

Combining Lists

• We introduced already the function append for list concatenation
• Function concat concatenates all lists contained in another list:

def concat(xss) = if (xss.isEmpty) Nil
else append(xss.head, concat(xss.tail))

Example: concat[[1,2], [], [3]] = [1, 2, 3]

• zip combines two lists into a list of pairs:
def zip(xs, ys) = if (xs.isEmpty || ys.isEmpty) Nil

else Cons((xs.head, ys.head),
zip(xs.tail, ys.tail))

Example:
zip(["Frank", "Bill"], [1, 2]) = [("Frank", 1), ("Bill", 2)]

7

Combining Lists

• A more general form of zip is function zipwith. It applies a function
f to corresponding elements from two lists:

def zipwith(f, xs, ys) = if (xs.isEmpty || ys.isEmpty) Nil
else Cons(f(xs.head, ys.head),

zipWith(xs.tail, ys.tail))

• Example: you have a list of first names fn and a list of surnames sn.
You can create a list of full names easily using zipwith:

zipwith((first, last| first + ” ” + last), fn, sn)

8

Applying to All (mapping)

Many functions call for all of the elements of a list to be transformed in
some way – this we call mapping.

Example: Suppose we have a list of tupels (Name, Age) and we want to
convert this list into a list of names only:

def names(xs) = {
if (xs.isEmpty) Nil
else { val (name, age) = xs.head; Cons(name, names(xs.tail)) }

}

Instead of implementing this scheme with different transformations over
and over again, we can write a single map function, which applies a
function f to all elements of a list:

def map(f, xs) = if (xs.isEmpty) Nil
else Cons(f(xs.head), map(f, xs.tail))

9

Selecting Elements (filtering)

Selecting all the elements of a list with a given property is also common:

def odds(xs) = if (xs.isEmpty) Nil
else if ((xs.head % 2) == 0) odds(xs.tail)
else Cons(xs.head, odds(xs.tail))

The general function filter takes a property and a list and returns those
elements of the list having the property.

Properties are modelled as predicates; i.e. functions over element types
that return a boolean value.

def filter(p, xs) = if (xs.isEmpty) Nil
else if (!p(xs.head)) filter(p, xs.tail)
else Cons(xs.head, filter(p, xs.tail))

With filter, function odds can be rewritten in the following way:

def odds(xs) = filter((x| (x % 2) == 1), xs)

10

Combining Items (folding)

• Most list operations we saw return lists as their result
• The operation of folding an operator or function into a list of values is

more general, since it can transform lists into other types
• There are two ways of folding a function into a list:

foldr(f, a, [x1, x2, . . . , xn]) = f(x1, f(x2, . . . f(xn, a)))

foldl(f, a, [x1, x2, . . . , xn]) = f(. . . f(f(a, x1), x2), . . . , xn)

• Here’s a Funnel implementation:
def foldr(f, a, xs) = if (xs.isEmpty) a

else f(xs.head, foldr(f, a, xs.tail))
def foldl(f, a, xs) = if (xs.isEmpty) a

else foldl(f, f(a, xs.head), xs.tail)

11

Applying Fold

Let’s implement a function that calculates the sum of all numbers of a list
using the fold combinator:

def sum(xs) = foldr((x, y| x + y), 0, xs)

Encoding the function append is simple as well:

def append(xs, ys) = foldr(Cons, ys, xs)

Is it possible to use foldl for both examples? What about efficiency?

12

A More Complicated Example

This is an obvious solution for reversing a list:

def reverse(xs) = if (xs.isEmpty) Nil
else append(reverse(xs.tail), Cons(xs.head, Nil))

Can you implement a more efficient version using the fold combinator?

13

Breaking up Lists

Another common pattern is to take or drop itemiz from a list while they
have some property.

take returns the first n elements of a list, drop returns the list without the
first n elements:

def take(n,xs) = if (n>0) Cons(xs.head, take(n–1, xs.tail)) else Nil
def drop(n,xs) = if (n>0) drop(n – 1, xs.tail) else xs

takewhile returns the longest prefix of a list, where every argument
satisfies a predicate p:

def takewhile(p, xs) = if (xs.isEmpty || !p(xs.head)) Nil
else Cons(xs.head, takewhile(p, xs.tail))

dropwhile is implemented similarly.

14

Exercises

In functional programming languages, matrices are often implemented as
lists of rows, where each row is itself a list of values. The matrix x1,1 x1,2 x1,3

x2,1 x2,2 x2,3


would be encoded like this:

[[x1,1, x1,2, x1,3], [x2,1, x2,2, x2,3]]

Implement the following functions operating on matrices and vectors:

• scalarprod computes the scalar product of two vectors

• transpose transposes a given matrix

• add adds two matrices

• mult multiplies two matrices

A list type is supplied, so all important list operations can be used.

15

Modules in Funnel

• To avoid name space conflicts, new data types are best implemented
inside of a module.
• A module is a record consisting of all the constructors
• Example:

val List = {
def Nil = {

def isEmpty = true
def head = error ”Nil.head”
def tail = error ”Nil.tail”

}
def Cons = {

def isEmpty = false
def head = x
def tail = xs

}
}

16

Modules in Funnel

• Access to the constructors has to be qualified with List:

List.Cons(1, List.Cons(2, List.Cons(3, List.Nil)))

17

