
Part II: Lambda Calculus

• Lambda Calculus is a foundation for functional programs.
• It’s an operational semantics, based on term rewriting.
• Lambda Calculus was developed by Alonzo Church in the 1930’s and

40’s as a theory of computable functions.
• Lambda calculus is as powerful as Turing machines. That is, every

Turing machine can be expressed as a function in the calculus and vice
versa

• Church Hypothesis: Every computable algorithm can be expressed by
a function in Lambda calculus.

1

Pure Lambda Calculus

• Pure Lambda calculus expresses only functions and function
applications.
• Three term forms:

Names x, y, z ∈ N
Terms D,E, F ::= x names

| λx.E abstractions

| DE applications

• Function-application is left-associative.
• The scope of a name extends as far to the right as possible.
• Example: λf.λx.f E x ≡ (λf.(λx.((f E) x))).
• Often, one uses the term variable instead of name.

2

Evaluation of Lambda Terms

Evaluation of lambda terms is by the β-reduction rule.

β : (λx.D)E → [E/x] D

[E/x] is substitution, which will be explained in detail later.

Example:

(λx.x)(λy.y) → λy.y

(λf.λx.f (f x))(λy.y)z → (λx.(λy.y)(λy.y)x)z

→ (λy.y)((λy.y)z)

→ (λy.y)z

→ z

3

Term Equivalence

Question: Are these terms equivalent?

λx.x and λy.y

What about

λx.y and λx.z

?

Need to distinguish between bound and free names.

4

Free And Bound Names

Definition The free names fn(E) of a term E are those names which
occur in E at a position where they are not in the scope of a definition in
the same term. Formally, fn(E) is defined as follows.

fn(x) = {x}
fn(λx.E) = fn(E)\{x}
fn(F E) = fn(F) ∪ fn(E).

All names which occur in a term E and which are not free in E are called
bound.

A term without any free variables is called closed.

5

Renaming

• The spelling of bound names is not significant.
• We regard terms D and E which are convertible by renaming of

bound names as equivalent, and write D ≡ E
• This is expressed formally by the following α-renaming rule:

α : λx.E ≡ λy.[y/x]E (y 6∈ fn(E))

Theorem: ≡ is an equivalence relation.

6

Substitutions

• We now have the means to define substitution formally:

[D/x] x = D

[D/x] y = y (x 6= y)

[D/x] λx.E = λx.E

[D/x] λy.E = λy.[D/x]E (x 6= y, y 6∈ fn(D))

[D/x] (F E) = ([D/x]F) ([D/x]E)

• Substitution affects only the free names of a term, not the bound ones.

7

Avoiding Name Capture

• We have to be careful that we do not bind free names of a substituted
expression (this is called name capture).
• For instance,

[y/x]λy.x 6≡ λy.y !!!

• We have to α-rename λy.x first before applying the substitution:

[y/x]λy.x ≡ [y/x]λz.x by α

≡ λz.y

• In the following, we will always assume that terms are renamed
automatically so as to make all substitutions well-defined.

8

Normal Forms

Definition: We write →→ for reduction in an arbitrary number of steps.
Formally:

E →→ E′ iff ∃n ≥ 0.E ≡ E0 → . . .→ En ≡ E′

Definition: A normal form is a term which cannot be reduced further.

Exercise: Define:

S
def≡ λf.λg.λx.fx(gx)

K
def≡ λx.λy.x

Can SKK be reduced to a normal form?

9

Combinators

• Lambda calculus gives one the possibility to define new functions
using λ abstractions.
• Question: Is that really necessary for expressiveness, or could one

also do with a fixed set of functions?
• Answer: (by Haskell Curry) Every closed λ-definable function can be

expressed as some combination of the combinators S and K.
• This insight has influenced the implementation of one functional

language (Miranda).
• The Miranda compiler translates a source program to a combination of

a handful of combinators (S, K, and a few others for “optimizations”).
• A Miranda runtime system then only has to implement the handful of

combinators.
• Very elegant, but “slow as continental drift”.

10

Confluence

If a term had more than one normal form, we’d have to worry about an
implementation finding “the right one”.

The following important theorem shows that this case cannot arise.

Theorem: (Church-Rosser) Reduction in λ-calculus is confluent: If
E →→ E1 and E →→ E2, then there exists a term E3 such that
E1 →→ E3 and E2 →→ E3.

Proof: Not easy.

Corollary: Every term can be reduced to at most one normal form.

Proof: Your turn.

11

Terms Without Normal Forms

• There are terms which do not have a normal form.
• Example: Let

Ω
def≡ (λx.(xx))(λx.(xx))

Then

Ω → (λx.(xx))(λx.(xx))

→ (λx.(xx))(λx.(xx))

→ . . .

• Terms which cannot be reduced to a normal form are called divergent.

12

Evaluation Strategies

The existence of terms without normal forms raises the question of
evaluation strategies.

For instance, let I
def≡ λx.x and consider:

(λx.I) Ω

→ I

in a single step. But one could also reduce:

(λx.I) Ω

→ (λx.I) Ω

→ (λx.I) Ω

→ . . .

by always doing the Ω→ Ω reduction.

13

Complete Evaluation Strategies

An evaluation strategy is a decision procedure which tells us which rewrite
step to choose, given a term where several reductions are possible.

Question 1: Is there a complete evaluation strategy, in the following sense:

Whenever a term has a normal form, the reduction using the
strategy will end in that normal form.

?

14

Weak Head Normal Forms

In practice, we are not so much interested in normal forms; only in terms
which are not further reducible “at the top level”.

That is, reduction would stop at a term of the form λx.E even if E was
still reducible.

These terms are called weak head normal forms or values. They are
characterized by the following grammar.

Values V ::= x | λx.E

We now reformulate our question as follows:

Question 2: Is there a (weakly) complete evaluation strategy, in the
following sense:

Whenever a term can be reduced to a value, the reduction using
the strategy will end in that value.

15

Precise Definition of Evaluation Strategy

How can we define evaluation strategies formally?

Idea: Use reduction contexts.

Definition: A context C is a term where exactly one subterm is replaced
by a “hole”, written []. C[E] denotes the term which results if the hole of
context C is filled with term E.

Examples of contexts: [] λx.λy.[] λx.f []

Previously, we have admitted reduction anywhere in a term without
explicitly saying so. Let’s formalize this:

Definition: A term E reduces at top-level to a term E′, if E and E′ are
the left- and right-hand sides of an instance of rule β. We write in this
case: E →β E

′.

16

Definition: A term E reduces to a term E’, written E → E′ if there
exists a context C and terms D, D′ such that

E ≡ C[D]

E′ ≡ C[D′]

D →β D′

So much for general reduction.

Now, to define an evaluation strategy, we restrict the possible set of
contexts in the definition of →.

The restriction can be expressed by giving a grammar which describes
permissible contexts.

Such contexts are called reduction contexts and we let the letter R range
over them

17

Call-By-Name

Definition: The call-by-name strategy is given by the following grammar
for reduction-contexts:

R ::= [] | R E

Definition: A term E reduces to a term E’ using the call-by-name
strategy, written E →cbn E

′ if there exists a reduction context R and
terms D, D′ such that

E ≡ R[D]

E′ ≡ R[D′]

D →β D′

18

Deterministic Reduction Strategies

Definition: A reduction strategy is deterministic if for any term at most
one reduction step is possible.

Proposition: The call-by-name strategy →cbn is deterministic.

Proof: There is only one way a term can be split into a reduction
context R and a subterm which is reducible at top-level.

19

Exercise: Reduce the term K I Ω with the call-by-name strategy, where

K
def≡ λx.λy.x

I
def≡ λx.x

Ω
def≡ (λx.(xx))(λx.(xx))

Theorem: (Standardization) Call-by-name reduction is weakly complete:
Whenever E →→ V then E →→cbn V

′.

Proof: hard.

Question: Modify call-by-name reduction to normal-order reduction,
which always reduces a term to a normal form, if it has one. Which
changes to the definition of reduction contexts R are necessary?

20

• In practice, call-by-name is rarely used since it leads to duplicate
evaluations of arguments. Example:

(λf.f(fy))((λx.x)(λx.x))

→ (λx.x)(λx.x)((λx.x)(λx.x)y)

→ (λx.x)((λx.x)(λx.x)y)

→ (λx.x)((λx.x)y)

→ (λx.x)y

→ y

• Note that the argument (λx.x)(λx.x) is evaluated twice.

21

• A shorter reduction can often be achieved by evaluating function
arguments before they are passed. In our example:

(λf.f(fy))((λx.x)(λx.x))

→ (λf.f(fy))(λx.x)

→ (λx.x)((λx.x)y)

→ (λx.x)y

→ y

22

Call-By-Value

The call-by-value strategy evaluates function arguments before applying
the function.

It is often more efficient than the call-by-name strategy. However:

Proposition: The call-by-value strategy is not (weakly) complete.

Question: Name a term which can be reduced to a value following the
call-by-name strategy, but not following the call-by-value strategy.

Hence we have a dilemma: One strategy is in practice too inefficient, the
other is incomplete.

How to solve this?

23

First Solution: Call-By-Need Evaluation

• Idea: Rather than re-evaluating arguments repeatedly, save the result
of the first evaluation and use that for subsequent evaluations.
• This technique is called memoization.
• It is used in implementations of lazy functional languages such as

Miranda or Haskell.
• A formalization of call-by-need is possible, but beyond the scope of

this course. See
A Call-by-Need Lambda Calculus, Zena Ariola, Matthias Felleisen,

John Maraist, Martin Odersky and Philip Wadler. Proc. ACM

Symposium on Principles of Programming Languages, 1995.

http://diwww.epfl.ch/˜odersky/papers/#FP–Theory.

Exercise: What is a good data representation for call-by-need
evaluation?

24

Second Solution: Call-By-Value Calculus

• Rather than tweaking the evaluation strategy to be complete with
respect to a given calculus, we can also change the calculus so that a
given evaluation strategy becomes complete with respect to it.
• This has been done by Gordon Plotkin, in the call-by-value lambda

calculus.
• The terms and values of this calculus are defined as before. A more

concise re-formulation is:

Terms D,E, F ::= V | D E

Values V,W ::= x | λx.E

• As reduction rule, we have:

βV : (λx.D)V → [V/x] D

25

• As reduction contexts, we have:

RV ::= [] | RV E | V RV

• Let →V be general reduction of terms with the βV rule, and let →cbv
be βV reduction only at the holes of call-by-value reduction contexts
RV . Then we have:

Theorem: (Plotkin) →V reduction is confluent.

Theorem: (Plotkin) →cbv is weakly complete with respect to →V .

26

Church Encodings

• The treatment so far covered pure lambda calculus which consists of
just functions and their applications.
• Actual programming languages add to this primitive data types and

their operations, named value and function definitions, and much
more.

• We can model these constructs by extending the basic calculus.
• But it is also possible to encode these constructs in the basic calculus

itself.
• These encodings will be presented in the following.
• We will assume in general call-by-name evaluation, but will also work

out modifications needed for call-by-value.

27

Encoding of Booleans

• An abstract type of booleans is given by the two constants true and
false as well as the conditional if.
• Other constructs can be written in terms of these primitives. E.g.

not x = if (x) false else true
x || y = if (x) true else y
x && y = if (x) y else false

• Idea: The encoding of a boolean value B ∈ {true,false} is the binary
function

λx.λy. if (B) x else y

• That is:
true

def
≡ λx. λy. x

false
def
≡ λx. λy. y

if c x y
def
≡ c x y

28

Example:

if (true) D else E
def
≡ true D E
def
≡ (λx .λy. x) D E
→ (λy . D) E
→ D

Question: What changes to this encoding are necessary if the evaluation
strategy is call-by-value?

29

Encoding of Lists

The encoding of Booleans can be generalized to arbitrary algebraic data
types.

Example: Consider the type of lists (as defined in Haskell):

data List a = Nil | Cons a (List a)

This defines a type of lists with (nullary) constructor Nil and (curried
binary) constructor Cons.

A list xs can be accessed using a case-expression

case xs of
Nil ⇒ E1

| Cons x xs ⇒ E2

Here, the expression of the second branch, E2, can refer to the variables x

and xs defined in the Cons pattern.

30

All other functions over lists can be written in terms of the case-expression.

For instance, function car which equals head except that it avoids errors,
can be written as:

car xs =
case xs of

Nil ⇒ Nil
| Cons y ys ⇒ x

Question: How can lists be encoded?

Same principle as before: Equate a list with the case-expression that
accesses it.

xs
def
≡ λa.λb.case xs of

Nil ⇒ a
| Cons x xs ⇒ b x xs

31

That is:

Nil
def
≡ λa.λb. a

Cons x xs
def
≡ λa.λb. b x xs

or, equivalently:

Cons
def
≡ λx.λxs.λa.λb. b x xs

The pattern-bound names x and xs are now passed as parameters to the
case branch that accesses them.

Example: : car is coded as follows:

car
def
≡ λxs. xs Nil (λy.λys.y)

Exercise: Church-encode function isEmpty which returns true iff the
given list is empty.

32

Encoding of Numbers

The encoding for lists generalizes to arbitrary data types which are defined
in terms of a finite number of constructors.

For instance, whole numbers don’t present any new difficulties. To see this,
note that natural numbers can be coded as algebraic data types as follows:

data Nat = Zero | Succ Nat

Hence:

Zero
def
≡ λa.λb.a

Succ x
def
≡ λa.λb.b x

Note: Church encodings do not reflect types. In fact Zero, Nil, and true

are all mapped to the same term!

33

Encoding of Definitions

A non-recursive value definition val x = D ; E can be encoded as:

val x = D ; E
def
≡ (λx.E) D

Caveat: With a call-by-name strategy, D might be evaluated more than
once.

Let’s try an analogous principle for function definitions:

def f x = D ; E
def
≡ val f = λx.D ; E
def
≡ (λf.E) (λx.D)

But this fails if f is used recursively in D! (Why?)

34

Fixed Points to the Rescue

If we have a recursive definition of

val f = E

where E refers to f, we can interpret this as a solution to the equation

f = E

Another way to characterize solutions to this equation is to say that these
solutions are fixed points of the function λf.E.

Definition: A fixed point of a function f is a value x such that

f x = x

35

Proposition: The solutions of f = E are exactly the fixed points of λf.E

Proof: F is a solution of the equation

f = E

iff

F = [F/f]E

iff

F = (λf.E) F

iff F is a fixed point of λf.E.

36

Fixed Point Operators

Let’s assume the existence of a fixed point operator Y . For every function
f , Y f evaluates to a fixed point of f . That is,

Y f = f (Y f)

Then we can encode potentially recursive definitions as follows:

def f x = D ; E
def
≡ val f = Y (λf.λx.D) ; E
def
≡ (λf.E) (Y (λf.λx.D))

Remains the question whether Y exists.

37

Proposition: Let

Y
def≡ λf.(λx.f (xx)) (λx.f (xx))

Then Y is a fixed point operator:

Y f = f (Y f)

Proof: By repeated β-reduction.

38

Least Fixed Points

In fact, an equation will in general have several solutions, and a function
will in general have several fixed points.

Example: The equation

f = f

has every λ-term as a solution.

Can we characterize the fixed point computed by Y ?

Proposition: Among all the fixed points of a function f , Y f will return
the one which diverges most often. This is also called the least fixed point
of the function f .

Exercise: Find the least fixed point of λf.f (which is also the least
solution of the equation f = f).

39

Connection to Domain Theory

• The definition of least fixed points is made precise in the field of
domain theory.
• Domain theory gives λ-terms meaning by mapping them to

mathematical functions.
• Divergent terms are modeled by a value ⊥, which stands for

“undefined”.
• Domain theory introduces a partial ordering on values which makes ⊥

smaller than any defined value.
• The fixed points computed by Y are the smallest with respect to this

ordering.

40

Summary

• We have seen the basic theory of λ-calculus, and how it can express
functional programming.
• Two main variants: Call-by-value and call-by-name.
• In each case, evaluation is described by reduction of function

applications, using rule β (or βV).
• λ-calculus has two important properties, which make it well suited as

a basis of deterministic programming languages:

• Confluence: Every term can be reduced to at most one value.
• Standardization: There exists a deterministic reduction

strategy which always reduces a term to a value, provided it can
be done at all.

41

Outlook

• λ-calculus is ideally suited as a basis for functional programming.
• But it is less well suited as basis for imperative programming with side

effects (essentially, need to introduce and carry along a data structure
describing global state).

• It is not suitable at all as a basis for reactive systems with concurrent
evaluation.

• Later on, we will extend λ-calculus to join calculus which can express
these additional concepts.

• The price we will have to pay for the generalization is the loss of the
confluence and standardization properties.

42

