
Part II: Lambda Calculus

• Lambda Calculus is a foundation for functional programs.
• It’s an operational semantics, based on term rewriting.
• Lambda Calculus was developed by Alonzo Church in the 1930’s and

40’s as a theory of computable functions.
• Lambda calculus is as powerful as Turing machines. That is, every

Turing machine can be expressed as a function in the calculus and vice
versa

• Church Hypothesis: Every computable algorithm can be expressed by
a function in Lambda calculus.
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Pure Lambda Calculus

• Pure Lambda calculus expresses only functions and function
applications.
• Three term forms:

Names x, y, z ∈ N
Terms D,E, F ::= x names

| λx.E abstractions

| DE applications

• Function-application is left-associative.
• The scope of a name extends as far to the right as possible.
• Example: λf.λx.f E x ≡ (λf.(λx.((f E) x))).
• Often, one uses the term variable instead of name.
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Evaluation of Lambda Terms

Evaluation of lambda terms is by the β-reduction rule.

β : (λx.D)E → [E/x] D

[E/x] is substitution, which will be explained in detail later.

Example:

(λx.x)(λy.y) → λy.y

(λf.λx.f (f x))(λy.y)z → (λx.(λy.y)(λy.y)x)z

→ (λy.y)((λy.y)z)

→ (λy.y)z

→ z
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Term Equivalence

Question: Are these terms equivalent?

λx.x and λy.y

What about

λx.y and λx.z

?

Need to distinguish between bound and free names.

4



Free And Bound Names

Definition The free names fn(E) of a term E are those names which
occur in E at a position where they are not in the scope of a definition in
the same term. Formally, fn(E) is defined as follows.

fn(x) = {x}
fn(λx.E) = fn(E)\{x}
fn(F E) = fn(F ) ∪ fn(E).

All names which occur in a term E and which are not free in E are called
bound.

A term without any free variables is called closed.

5



Renaming

• The spelling of bound names is not significant.
• We regard terms D and E which are convertible by renaming of

bound names as equivalent, and write D ≡ E
• This is expressed formally by the following α-renaming rule:

α : λx.E ≡ λy.[y/x]E (y 6∈ fn(E))

Theorem: ≡ is an equivalence relation.
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Substitutions

• We now have the means to define substitution formally:

[D/x] x = D

[D/x] y = y (x 6= y)

[D/x] λx.E = λx.E

[D/x] λy.E = λy.[D/x]E (x 6= y, y 6∈ fn(D))

[D/x] (F E) = ([D/x]F ) ([D/x]E)

• Substitution affects only the free names of a term, not the bound ones.
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Avoiding Name Capture

• We have to be careful that we do not bind free names of a substituted
expression (this is called name capture).
• For instance,

[y/x]λy.x 6≡ λy.y !!!

• We have to α-rename λy.x first before applying the substitution:

[y/x]λy.x ≡ [y/x]λz.x by α

≡ λz.y

• In the following, we will always assume that terms are renamed
automatically so as to make all substitutions well-defined.
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Normal Forms

Definition: We write →→ for reduction in an arbitrary number of steps.
Formally:

E →→ E′ iff ∃n ≥ 0.E ≡ E0 → . . .→ En ≡ E′

Definition: A normal form is a term which cannot be reduced further.

Exercise: Define:

S
def≡ λf.λg.λx.fx(gx)

K
def≡ λx.λy.x

Can SKK be reduced to a normal form?
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Combinators

• Lambda calculus gives one the possibility to define new functions
using λ abstractions.
• Question: Is that really necessary for expressiveness, or could one

also do with a fixed set of functions?
• Answer: (by Haskell Curry) Every closed λ-definable function can be

expressed as some combination of the combinators S and K.
• This insight has influenced the implementation of one functional

language (Miranda).
• The Miranda compiler translates a source program to a combination of

a handful of combinators (S, K, and a few others for “optimizations”).
• A Miranda runtime system then only has to implement the handful of

combinators.
• Very elegant, but “slow as continental drift”.
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Confluence

If a term had more than one normal form, we’d have to worry about an
implementation finding “the right one”.

The following important theorem shows that this case cannot arise.

Theorem: (Church-Rosser) Reduction in λ-calculus is confluent: If
E →→ E1 and E →→ E2, then there exists a term E3 such that
E1 →→ E3 and E2 →→ E3.

Proof: Not easy.

Corollary: Every term can be reduced to at most one normal form.

Proof: Your turn.
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Terms Without Normal Forms

• There are terms which do not have a normal form.
• Example: Let

Ω
def≡ (λx.(xx))(λx.(xx))

Then

Ω → (λx.(xx))(λx.(xx))

→ (λx.(xx))(λx.(xx))

→ . . .

• Terms which cannot be reduced to a normal form are called divergent.
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Evaluation Strategies

The existence of terms without normal forms raises the question of
evaluation strategies.

For instance, let I
def≡ λx.x and consider:

(λx.I) Ω

→ I

in a single step. But one could also reduce:

(λx.I) Ω

→ (λx.I) Ω

→ (λx.I) Ω

→ . . .

by always doing the Ω→ Ω reduction.
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Complete Evaluation Strategies

An evaluation strategy is a decision procedure which tells us which rewrite
step to choose, given a term where several reductions are possible.

Question 1: Is there a complete evaluation strategy, in the following sense:

Whenever a term has a normal form, the reduction using the
strategy will end in that normal form.

?
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Weak Head Normal Forms

In practice, we are not so much interested in normal forms; only in terms
which are not further reducible “at the top level”.

That is, reduction would stop at a term of the form λx.E even if E was
still reducible.

These terms are called weak head normal forms or values. They are
characterized by the following grammar.

Values V ::= x | λx.E

We now reformulate our question as follows:

Question 2: Is there a (weakly) complete evaluation strategy, in the
following sense:

Whenever a term can be reduced to a value, the reduction using
the strategy will end in that value.
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Precise Definition of Evaluation Strategy

How can we define evaluation strategies formally?

Idea: Use reduction contexts.

Definition: A context C is a term where exactly one subterm is replaced
by a “hole”, written [ ]. C[E] denotes the term which results if the hole of
context C is filled with term E.

Examples of contexts: [ ] λx.λy.[ ] λx.f [ ]

Previously, we have admitted reduction anywhere in a term without
explicitly saying so. Let’s formalize this:

Definition: A term E reduces at top-level to a term E′, if E and E′ are
the left- and right-hand sides of an instance of rule β. We write in this
case: E →β E

′.
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Definition: A term E reduces to a term E’, written E → E′ if there
exists a context C and terms D, D′ such that

E ≡ C[D]

E′ ≡ C[D′]

D →β D′

So much for general reduction.

Now, to define an evaluation strategy, we restrict the possible set of
contexts in the definition of →.

The restriction can be expressed by giving a grammar which describes
permissible contexts.

Such contexts are called reduction contexts and we let the letter R range
over them
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Call-By-Name

Definition: The call-by-name strategy is given by the following grammar
for reduction-contexts:

R ::= [ ] | R E

Definition: A term E reduces to a term E’ using the call-by-name
strategy, written E →cbn E

′ if there exists a reduction context R and
terms D, D′ such that

E ≡ R[D]

E′ ≡ R[D′]

D →β D′
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Deterministic Reduction Strategies

Definition: A reduction strategy is deterministic if for any term at most
one reduction step is possible.

Proposition: The call-by-name strategy →cbn is deterministic.

Proof: There is only one way a term can be split into a reduction
context R and a subterm which is reducible at top-level.
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Exercise: Reduce the term K I Ω with the call-by-name strategy, where

K
def≡ λx.λy.x

I
def≡ λx.x

Ω
def≡ (λx.(xx))(λx.(xx))

Theorem: (Standardization) Call-by-name reduction is weakly complete:
Whenever E →→ V then E →→cbn V

′.

Proof: hard.

Question: Modify call-by-name reduction to normal-order reduction,
which always reduces a term to a normal form, if it has one. Which
changes to the definition of reduction contexts R are necessary?
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• In practice, call-by-name is rarely used since it leads to duplicate
evaluations of arguments. Example:

(λf.f(fy))((λx.x)(λx.x))

→ (λx.x)(λx.x)((λx.x)(λx.x)y)

→ (λx.x)((λx.x)(λx.x)y)

→ (λx.x)((λx.x)y)

→ (λx.x)y

→ y

• Note that the argument (λx.x)(λx.x) is evaluated twice.
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• A shorter reduction can often be achieved by evaluating function
arguments before they are passed. In our example:

(λf.f(fy))((λx.x)(λx.x))

→ (λf.f(fy))(λx.x)

→ (λx.x)((λx.x)y)

→ (λx.x)y

→ y
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Call-By-Value

The call-by-value strategy evaluates function arguments before applying
the function.

It is often more efficient than the call-by-name strategy. However:

Proposition: The call-by-value strategy is not (weakly) complete.

Question: Name a term which can be reduced to a value following the
call-by-name strategy, but not following the call-by-value strategy.

Hence we have a dilemma: One strategy is in practice too inefficient, the
other is incomplete.

How to solve this?
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First Solution: Call-By-Need Evaluation

• Idea: Rather than re-evaluating arguments repeatedly, save the result
of the first evaluation and use that for subsequent evaluations.
• This technique is called memoization.
• It is used in implementations of lazy functional languages such as

Miranda or Haskell.
• A formalization of call-by-need is possible, but beyond the scope of

this course. See
A Call-by-Need Lambda Calculus, Zena Ariola, Matthias Felleisen,

John Maraist, Martin Odersky and Philip Wadler. Proc. ACM

Symposium on Principles of Programming Languages, 1995.

http://diwww.epfl.ch/˜odersky/papers/#FP–Theory.

Exercise: What is a good data representation for call-by-need
evaluation?
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Second Solution: Call-By-Value Calculus

• Rather than tweaking the evaluation strategy to be complete with
respect to a given calculus, we can also change the calculus so that a
given evaluation strategy becomes complete with respect to it.
• This has been done by Gordon Plotkin, in the call-by-value lambda

calculus.
• The terms and values of this calculus are defined as before. A more

concise re-formulation is:

Terms D,E, F ::= V | D E

Values V,W ::= x | λx.E

• As reduction rule, we have:

βV : (λx.D)V → [V/x] D
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• As reduction contexts, we have:

RV ::= [ ] | RV E | V RV

• Let →V be general reduction of terms with the βV rule, and let →cbv
be βV reduction only at the holes of call-by-value reduction contexts
RV . Then we have:

Theorem: (Plotkin) →V reduction is confluent.

Theorem: (Plotkin) →cbv is weakly complete with respect to →V .
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Church Encodings

• The treatment so far covered pure lambda calculus which consists of
just functions and their applications.
• Actual programming languages add to this primitive data types and

their operations, named value and function definitions, and much
more.

• We can model these constructs by extending the basic calculus.
• But it is also possible to encode these constructs in the basic calculus

itself.
• These encodings will be presented in the following.
• We will assume in general call-by-name evaluation, but will also work

out modifications needed for call-by-value.
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Encoding of Booleans

• An abstract type of booleans is given by the two constants true and
false as well as the conditional if.
• Other constructs can be written in terms of these primitives. E.g.

not x = if (x) false else true
x || y = if (x) true else y
x && y = if (x) y else false

• Idea: The encoding of a boolean value B ∈ {true,false} is the binary
function

λx.λy. if (B) x else y

• That is:
true

def
≡ λx. λy. x

false
def
≡ λx. λy. y

if c x y
def
≡ c x y
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Example:

if (true) D else E
def
≡ true D E
def
≡ (λx .λy. x) D E
→ (λy . D) E
→ D

Question: What changes to this encoding are necessary if the evaluation
strategy is call-by-value?
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Encoding of Lists

The encoding of Booleans can be generalized to arbitrary algebraic data
types.

Example: Consider the type of lists (as defined in Haskell):

data List a = Nil | Cons a (List a)

This defines a type of lists with (nullary) constructor Nil and (curried
binary) constructor Cons.

A list xs can be accessed using a case-expression

case xs of
Nil ⇒ E1

| Cons x xs ⇒ E2

Here, the expression of the second branch, E2, can refer to the variables x

and xs defined in the Cons pattern.
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All other functions over lists can be written in terms of the case-expression.

For instance, function car which equals head except that it avoids errors,
can be written as:

car xs =
case xs of

Nil ⇒ Nil
| Cons y ys ⇒ x

Question: How can lists be encoded?

Same principle as before: Equate a list with the case-expression that
accesses it.

xs
def
≡ λa.λb.case xs of

Nil ⇒ a
| Cons x xs ⇒ b x xs
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That is:

Nil
def
≡ λa.λb. a

Cons x xs
def
≡ λa.λb. b x xs

or, equivalently:

Cons
def
≡ λx.λxs.λa.λb. b x xs

The pattern-bound names x and xs are now passed as parameters to the
case branch that accesses them.

Example: : car is coded as follows:

car
def
≡ λxs. xs Nil (λy.λys.y)

Exercise: Church-encode function isEmpty which returns true iff the
given list is empty.
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Encoding of Numbers

The encoding for lists generalizes to arbitrary data types which are defined
in terms of a finite number of constructors.

For instance, whole numbers don’t present any new difficulties. To see this,
note that natural numbers can be coded as algebraic data types as follows:

data Nat = Zero | Succ Nat

Hence:

Zero
def
≡ λa.λb.a

Succ x
def
≡ λa.λb.b x

Note: Church encodings do not reflect types. In fact Zero, Nil, and true

are all mapped to the same term!
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Encoding of Definitions

A non-recursive value definition val x = D ; E can be encoded as:

val x = D ; E
def
≡ (λx.E) D

Caveat: With a call-by-name strategy, D might be evaluated more than
once.

Let’s try an analogous principle for function definitions:

def f x = D ; E
def
≡ val f = λx.D ; E
def
≡ (λf.E) (λx.D)

But this fails if f is used recursively in D! (Why?)
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Fixed Points to the Rescue

If we have a recursive definition of

val f = E

where E refers to f, we can interpret this as a solution to the equation

f = E

Another way to characterize solutions to this equation is to say that these
solutions are fixed points of the function λf.E.

Definition: A fixed point of a function f is a value x such that

f x = x
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Proposition: The solutions of f = E are exactly the fixed points of λf.E

Proof: F is a solution of the equation

f = E

iff

F = [F/f ]E

iff

F = (λf.E) F

iff F is a fixed point of λf.E.
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Fixed Point Operators

Let’s assume the existence of a fixed point operator Y . For every function
f , Y f evaluates to a fixed point of f . That is,

Y f = f (Y f)

Then we can encode potentially recursive definitions as follows:

def f x = D ; E
def
≡ val f = Y (λf.λx.D) ; E
def
≡ (λf.E) (Y (λf.λx.D))

Remains the question whether Y exists.
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Proposition: Let

Y
def≡ λf.(λx.f (xx)) (λx.f (xx))

Then Y is a fixed point operator:

Y f = f (Y f)

Proof: By repeated β-reduction.
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Least Fixed Points

In fact, an equation will in general have several solutions, and a function
will in general have several fixed points.

Example: The equation

f = f

has every λ-term as a solution.

Can we characterize the fixed point computed by Y ?

Proposition: Among all the fixed points of a function f , Y f will return
the one which diverges most often. This is also called the least fixed point
of the function f .

Exercise: Find the least fixed point of λf.f (which is also the least
solution of the equation f = f).
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Connection to Domain Theory

• The definition of least fixed points is made precise in the field of
domain theory.
• Domain theory gives λ-terms meaning by mapping them to

mathematical functions.
• Divergent terms are modeled by a value ⊥, which stands for

“undefined”.
• Domain theory introduces a partial ordering on values which makes ⊥

smaller than any defined value.
• The fixed points computed by Y are the smallest with respect to this

ordering.
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Summary

• We have seen the basic theory of λ-calculus, and how it can express
functional programming.
• Two main variants: Call-by-value and call-by-name.
• In each case, evaluation is described by reduction of function

applications, using rule β (or βV ).
• λ-calculus has two important properties, which make it well suited as

a basis of deterministic programming languages:

• Confluence: Every term can be reduced to at most one value.
• Standardization: There exists a deterministic reduction

strategy which always reduces a term to a value, provided it can
be done at all.
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Outlook

• λ-calculus is ideally suited as a basis for functional programming.
• But it is less well suited as basis for imperative programming with side

effects (essentially, need to introduce and carry along a data structure
describing global state).

• It is not suitable at all as a basis for reactive systems with concurrent
evaluation.

• Later on, we will extend λ-calculus to join calculus which can express
these additional concepts.

• The price we will have to pay for the generalization is the loss of the
confluence and standardization properties.
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