
Part III: Algebraic Types

• Lists are a special instance of an algebraic type.
• Algebraic types are given by a number of constructors, which can take

parameters.
• Members of an algebraic type are accessed via pattern matching.
• Many functional languages provide special syntax for algebraic types

and pattern matching.

Example: Lists in Haskell (minus infix syntax, currying):

data List a = Nil | Cons (a, List a)

append (xs, ys) =
case xs of

Nil ⇒ ys
| Cons (x, xs1) ⇒ Cons (x, append (xs1, ys))

1



Abstract Data Types

• Algebraic types often arise naturally as implementations of abstract
data types.
• An abstract data type is defined by a set of functions with their types

and a set of axioms which apply to combinations of the functions.

Example: Sets of integers.

Name of abstract data type: IntSet.
Functions:

empty : IntSet
insert: (Int, IntSet) → IntSet
member: (Int, IntSet) → Boolean

Axioms:
member (x, empty) = false
member (x, insert (x, s)) = true
member (x, insert (y, s)) = member (x, s) if x != y

2



Note that the behavior of the type is completely defined, even though no
data representation or function implementations are given.

Reference:

J. Guttag: Abstract Data Types and the Development of Data

Structures. Communications of the ACM vol. 20, nr. 3, pages 396–404.

3



IntSet’s as a Data Type

An implementation of IntSets as a data type can be derived from the
specification as follows:

data IntSet = Empty | Insert (Int, IntSet)

member (x, Empty) = false
member (x, Insert (y, s)) = if (x == y) then true

else member (x, s)

Can this be generalized?

4



General Implementation Scheme

We can often split the set of functions defined in an abstract data type into
two sets:

• A set of generators G.
• A set of accessors A.

The sets should be chosen such that each axiom is of the form

A(G1, ..., Gn) = ...

If all axioms can be represented in this way, an implementation in terms of
an algebraic data type suggests itself:

• Every generator function G becomes a constructor of the algebraic
type.

• Every accessor function A becomes a function with all axioms starting
with A as defining equations.

5



Encoding Algebraic Types

How can algebraic data types be represented in Funnel?

Idea: Look at Church encodings:

• A type with alternatives needs to implement the corresponding case
expression.

• The case expression takes one function per alternative as parameter.
• This function represents the branch corresponding to the alternative.
• In funnel, we group the set of branch functions in a record.

6



Encoding Lists

A case expression for lists can be represented as a record:

{
def Nil = ... // branch for Nil lists
def Cons (x, xs) = ... // branch for Cons lists

}

Let’s assume lists are objects with a match method, which takes a record
representing a case expression and invokes the right branch of this record.

Then append would be coded as follows:

def append (xs, ys) =
xs.match {

def Nil = ys
def Cons (x, xs1) = List.Cons (x, append (xs1, ys))

}

What does this remind you of?

7



Constructing Lists

It remains to define how lists are constructed.

As before, we will have two constructors, Nil and Cons, wrapped in a List

module.

Each constructor needs to define just the match method; everything else
can then be defined in terms match.

This leads to the following structure:

val List = {

def Nil = { def match v =

def Cons (x, xs) = { def match v =
}

How is this completed?

8



All other operations on lists can be written in terms of match.

For example:

def isEmpty (xs) = xs.match {
def Nil = true
def Cons (x, xs1) = false

}

def head (xs) = xs.match {
def Nil = error
def Cons (x, xs1) = x

}

def tail (xs) = xs.match {
def Nil = error
def Cons (x, xs1) = xs1

}

Exercise: Write implementations of map, foldl and zip which use the new
representation of lists.

Exercise: Write an implementation of IntSet in Funnel.

9


