
Transactional Memories: a theoretical introduction

Selim Arsever - selim.arsever@epfl.ch & Pascal Perez - pascal.perez@epfl.ch

1 abstract

Concurrent programming is usually very complex
when dealing with data structures consistency shared
among many processes. Traditional lock-based tech-
niques do not scale and may even break when pla-
ced in arbitrary contexts. In this paper, we introduce
modern ways to implement lock-free dynamic data
structures, simply and efficiently using transactional
memories.

2 preliminary

Before delving into the lock-free world, we are going
to add syntactic sugar to the polyadic version of the
π-Calculus introduced by Robin Milner in [7]. We will
use

[u = v] P
def
= (νy) ((νuv) (u 〈y〉 |v(z).z) |y.P)

which is a π-Calculus formulation of a simple channel
equality. If the u is the same name as v, they will be
able to interact and thus synchronize with the guard
posted in front of P to make is start. Otherwise, there
will be no further interactions and the resulting pro-
cess will be bisimilar to the 0 process.

3 sharing memory

Before digging into transactional memories, we shall
have a brief overview of lock-based techniques, why
they are required and why they are inefficient. Throu-
ghout this article, we will consider a one bit memory
defined by the following π-process .

M(w,r,v) := w(f).M〈w,r,f〉 + r〈v〉.M〈w,r,v〉

Its behavior is straightforward, the memory cell is
initialized to a certain value v and can be written
(w) or read (r) at any moment. We can then use
this memory for temporary storage whilst doing some
work, symbolized by a WORK process (which we
suppose to be autonomous, fn(WORK) = ∅).

A(w,r) := (νv) (w〈v〉.WORK.r(v′).[v′ = v]A)

The process writes to memory, works and either reads
a correct value from memory and continues or fails.
We can then compose both A〈w,r〉 |M〈w,r,v〉 which
result in a simple process writing to memory, wor-
king, reading and starting over. This process could
correspond to a simple single threaded program in-
teracting with main memory. Now, making the situa-
tion a little more complex A〈w,r〉 |A〈w,r〉 |M〈w,r,v〉
– which may be a näıve way to use a shared memory
– introduces failures which will result in one process
stopping.

For example, if the first A process begins to write,
does some work, is preempted for the second A pro-
cess that writes something else to memory, then the
first A process continues to execute, we find our self
in a situation where it expect one value but finds
another, thus failing.

4 locking

The common problem outlined above pushes deve-
lopers to use locks on memory cells, thus forbidding
interleaved accesses resulting to erroneous and inco-
herent data. We can implement that feature on our
memory cell.

LM(w,r,v) := l.M〈w,r,v〉
M(w,r,v) := u.LM〈w,r,v〉 + . . .

1

Here the l and u channels correspond to lock and
unlock, respectively. Modifying our preceding process
to use the locking techniques.

A(w,r) := (νv)
(
l.w〈v〉.WORK.r(v′).[v′ = v]u.A

)
Note that if a process fails (reads incoherent data) it
does not release the lock. This unfortunate “proper-
ty” will be addressed in more detail later. Neverthe-
less, the designed solution works fine when composed
with any number or processes !A |M .

5 deadlocks

Problems with locks begin to occur when more
than one lock is needed. For example let’s look at
this simple system:

A1〈w,r〉 |A2〈w,r〉 |LM1〈w,r,v〉 |LM2〈w,r,v〉

In such a situation we find ourself with the risk off
a deadlock when the two processes take and release
the locks in a particular order. Let’s partialy define
those two processes in such a way.

A1(w,r) := (νv)
(
l1.w1〈v〉.l2.w2〈v〉...

)
A2(w,r) := (νv)

(
l2.w2〈v〉.l1.w1〈v〉...

)
It is easy to see that if A1 begins to execute, stops af-
ter taking the first lock, A2 begins and then takes the
second lock the system is dead - nothing can happen
anymore.

Of course such a simple situation can be avoided by
programming conventions but they require a global
knowledge of the locking policy. With very big sys-
tems this becomes nearly unfeasible. The situation is
even worst when dealing with functions. As a matter
of fact, if a function uses locked data structure, one
should be very careful when using in arbitrary envi-
ronment. There is no systematic approach for dealing
with such problems.

One can easily be convinced of the practical reality
of these issues by looking at the Linux kernel where a
Big Kernel Lock (BKL) has been implemented to deal
with such messy situations. Indeed, fine grain locking
is way too complicated to achieve! Locking an entire

system is clearly a very sub-optimal solution - not
even to mention that it is very unaesthetic.

In addition, real life processes (threads) can fail. If
they do whilst holding a lock the system may not be
able recover at all.

To sum up we argue that lock based techniques are
bad because they require a global knowledge of the
application, may durably degrade the system’s per-
formance due to obstruction and do not scale well.
Those problems justify the need for another way of
dealing with shared memory. Transactions and in par-
ticular transactional memories are one of them.

6 transaction

A transaction is a set of sequential operations that
can be interleaved freely with other operations and
yet result in the same, overall, result. Thus a tran-
sactional system seems - to an outside observer - as
advancing by atomic steps. A transaction is usually
said to have the ACID properties, that is:

Atomicity refers to the capacity of a transaction to
either commit or abort. If a transaction commits,
the system is updated atomically - as seen by an
outside observer - and if it aborts the system is
left unchanged.

Consistency states that if the system is in a legal
state, it will also be in a legal state after a tran-
saction commits.

Isolation ensures that opened transaction cannot ob-
serve another transaction’s effect that is not com-
mitted.

Durability requires the transactions that commits
to alter durably the system (changes are durably
recorded).

For instance, in a system where A + B + C must
stay constant, the two transactions T1 and T2 that
follow conform to the required properties.

T1 T2

A = A − 10 lock L1

lock L1 B = B − 20
B = B + 10 unlock L1

unlock L1 C = C + 20

2

Nevertheless, it is simple to construct two “transac-
tions” that fail and produce wrong result.

T1 T2

lock L1 lock L2

A = A − 10 B = B − 20
unlock L1 unlock L2

B = B + 10 C = C + 20

The problem here arises from the shared variable B
which can be read by T1, modified by T2 meanwhile
and then overwritten to a wrong value by T1.

7 transactional memories

We are now going to introduce and explain the
transactional memory (TM) principle. Classically, me-
mory is regarded as a rather passive entity. Its state -
or content - can be read and modified at any time, wi-
thout any control. On the other hand, transactional
memories constrain the access and ensure the me-
mory will be accessed in a transactional way. Whate-
ver the outside world, the TM ensures that the ACID
properties are met.

In the TM system we present, processes wishing to
interact must start a transaction explicitly and then
open a transactional object (in our case a one bit me-
mory cell) requesting a transactional object. When
they have a transactional object, they can freely up-
date it as if being in sequential context. When fini-
shed, they either commit or abort the transaction.
Aborting a transaction simply discards all changes
and closes the transaction. On the other hand, com-
mitting requires the TM system to validate the tran-
saction and may launch and exception, “forcing” the
process to restart. Nevertheless, if the commit suc-
ceeds, the internal object is atomically updated.

Here are some time lines representing three pro-
cesses reading and writing a one bit transactional
memory. The first on shows a possible flow of event
whereas the second one is incorrect:

A

B

C

W(0) R(1)

W(1) R(0)

W(0)

first time line (correct example)

A

B

C

W(0) R(1)

W(1) R(1)

W(0)

second time line (incorrect example)

The second example is incorrect because when A
reads one it implies that B has already finished to
write one. Therefore, C writes a zero after B and
then B cannot read a one later on.

8 π-Calculus modeling

In order to have cloneable memory cells, we are
going to reuse the one introduced earlier, adding the
possibility to create a new copy (clone the memory):

M(w,r,v,n) := w(f).M〈w,r,f,n〉 + r〈v〉.
M〈w,r,v,n〉 + (νw′,r′,n′)
(n〈w′,r′,n′〉. (M〈w,r,v,n〉 |M〈w′,r′,v,n′〉))

Here, the write (w), read (r) and value (v) channels
are homomorphic. The extra channel “new” (n) is
there to copy the memory. When called, it returns the
new communication channels to the copied memory
cell.

Now that we have the basics, we can construct the
TM system. Lets emphasize here that we require our

3

system to be non-blocking [5] requiring that the fai-
lure or indefinite delay of a process cannot prevent
other processes from making progress. The TM sys-
tem is able to answer to any begin request at any
time. Each processs interaction with the TM can be
seen as an independent sequence of operations, requi-
ring synchronization only at commit.

The TM system presented here has a protection
mechanism crash which permits the “banged” pro-
cess G to be deafened. As you can see, there is only
one open crash output at a time. Well will see later
that the G process consumes one in a special state
and therefore terminates the replication possibilities.

TM(b,n) :=
(
ν�t
) (

crash
∣∣! (crash.G|crash

)∣∣!p(x).k.x
)

where �t = (crash,p,k). Another subtle point is the
!p(x).k.x parralel part. The p channel stands for put
and the k channel for kill. This little structure stores
temporarely x channels (exceptions) for a deffered call
triggered by k. Let’s now look at G’s process defini-
tion. The channels meanings are as follows: b for be-
ginning a transaction, o for opening a transactional
object, g to get the communication channels connec-
ted to the newly created transactional object, a for
abort and c for commit.

G := b(o,g,a,c,x).p〈x〉.o.n(w′,r′,n′).g(w′,r′).(
a + c.crash.n′(w′′,r′′,n′′).

(
TM〈b,n′′〉|!k|c))

When a process wishes to open a transaction, it must
send its open, get, abort, commit and exception chan-
nel so that the TM system can interact. When these
are received, the exception channel is stored using
the put channel in the !p(x).k.x structure studied be-
fore. After a call to put, the structure will look like
k.xα|!p(x).k.x, therefore waiting for a kill to launch
an exception. After the put has been made, the pro-
cess can open a transactional object. The memory to
which the TM system is linked (via the n channel)
is copied and the write and read channel (w′ and r′)
are sent via the g channel. Finally, the process can
either abort a - discarding all changes - or c com-
mit. The system must ensure that only one process
can commit. Here, as there is only one crash output
at a time, the first process to request a commit and

whose G process internally synchronizes with crash
will be able to confirm the commit (c), all of the other
process will have an exception raised on their private
exception channel. After the crash, the system copies
the transactional object on the n′ channel (wich was
received when copying the original object), confirms
the commit and instantiates a new TM system linked
to the transactional object of the successful process.
In parallel, we kill !k all the other other process. The
unsuccessful processes will have to restart the tran-
saction on the b channel, that is connected to the
newly created TM.

We are now going to describe the processes using
this TM system.

Tα(b) := (νo,g,a,c,x)
(
b 〈o,g,a,c,x〉 .

o.g (w,r) .Wα. (a + c. (c + x.Tα 〈b〉)))
Here, processes begin their transactions (b) by sen-
ding private channels. The next step is to open (o)
a transactional object, wait to get (g) the channels,
work (Wα) and finally abort (a) or commit (c). When
a process commits, it waits for the commit confirma-
tion or for an exception (x). If an exception is raised,
the transaction restars.

The overall system is a parallel composition of every
described part with the necessary restrictions.

S := (νb)

(∏
α

Tα〈b〉 |(νw,r,v,n) (TM〈b,n〉 |M〈w,r,v,n〉)
)

Event though the system is correct from a theoretical
point of view, it has some flaws that we would like to
remove. The deferred exception mechanism (DEM)
!p(x).k.x is not satisfactory. Consider two transac-
tions T1 and T2 that have already executed the put
(p). Then the DEM will look like k.x1|k.x2|!p(x).k.x.
When one transaction successfully commits it will
crash the sytem and the !k will be able to internally
synchronize with k.x1 or k.x2. This is quite embarras-
sing as we do not want the committing transaction
to receive an exception! We are therefore going to
modify the DEM to

DEM :=!p(x,cancel).(k.x + cancel)

allowing to cancel a specified deferred exception call
on a special dedicated channel cancel. This added

4

possibility shall be used in a different way

G := b(o,g,a,c,x).(νcancel) (p〈x,cancel〉...(
a + c...

(
...|cancel.!k

)))
which will therefore cancel the successfully commit-
ting transaction’s deferred exception call and then
allow the DEM to work as it did before.

Another problem we may want to address in an
implementation is allowing exceptions as soon as a
transaction has started a transaction. Indeed, in the
present system exceptions are only taken into account
after a commit. Yet it would be better to allow ex-
ceptions to be received at any time.

9 π-Calculus modeling - proofs

Atomicity This property requires that if a transac-
tion aborts it does not modify the overall si-
tuation and that if it commits Atomicity This
property requires that if a transaction aborts it
does not modify the overall situation and that if
it commits the changes are made atomically, in
undividable steps as seen by an outside observer.
Atomic here means that once a successful com-
mit process has started and until it has finished
the outside observers cannot modify the system.
First of all, let’s notice that when the system
starts (in the state described by S) the memory
cell M is visible only to the TM system. Indeed,
the restrictions ensure that only the TM sys-
tem can communicate with it. Furthermore, the
TM system is only aware of the new (n) chan-
nel and therefore cannot write or read the me-
mory. The only memory cells that are actually
read and written are the copies (the transactio-
nal objects). Thus, when a transaction aborts
(a) the internal memory, which reflects the sys-
tems state, is left unchanged. When a transac-
tion commits (c) a copy of the transactional ob-
ject owned by the committing transaction is made
and a new instance of a TM system is made.
These steps are all internal to the “transaction-
TM” couple and therefore all the other transac-
tions cannot observe a change. Note here that

the commit confirmation (c) is made asynchro-
nously so that the system can continue running
even if the distant process does not respond (has
failed). In addition, the commit process cannot
be preempted because the system is crashed and
thus no transaction can pass the “crash” action
of the G process. Overall, this ensures that a
successful commit is atomic.

Consistency In our context, we have not defined
what a legal state of the system is and it is the-
refore difficult to argue about Consistency In our
context, we have not defined what a legal state
of the system is and it is therefore difficult to
argue about whether it is in one before and after
a transaction.

Isolation This property is trivially respected in our
system due to the cloning operation. In fact, a
transaction works on Isolation This property is
trivially respected in our system due to the clo-
ning operation. In fact, a transaction works on a
copy of a previously committed value. On-the-fly
modifications are local to transactions.

Durability When a transaction commits, the tran-
sactional object it had is copied so that the in-
ternal memory cell managed by the TM system
is always private (known only by the TM sys-
tem). Therefore, the changes are durably recor-
ded internally and cannot be modified without a
begin/commit cycle.

Références

[1] L. Bocci, C. Laneve and G. Zavattaro. A Cal-
culus for Long Running Transactions. In In
Proc. of Sixth IFIP Int. Conf. on Formal Me-
thods for Open-Object Based Distributed Systems
(FMOODS’03), pages 124-138, 2003.

[2] T. Harris and K. Fraser. Language Support for
Lightweight Transactions. In OOPSLA03, Octo-
ber 2630, 2003.

[3] M. Herlihy and J. Wing. Linearizability A Cor-
rectness Condition for Concurrent Objects. In
ACM Transactions on Programming Languages
and Systems, Vol. 12, No. 3, pages 463-492,
1990.

5

[4] M. Herlihy, V. Luchangco, P. Martin and M.
Moir. Dynamic-sized Lockfree Data Structures.
Technical Report TR-2002-110, Sun Microsys-
tems Laboratories, 2002.

[5] M. Herlihy, V. Luchangco, M. Moir and W.
Scherer. Software Transactional Memory for
Dynamic-Sized Data Structures. In PODC 2003,
July 1316, 2003.

[6] M. Herlihy, V. Luchangco and M. Moir. The Re-
peat Offender Problem: A Mechanism for Sup-
porting Dynamic-Sized, Lock-Free Data Struc-
tures. In Technical Report TR-2002-112, Sun
Microsystems Laboratories, 2002.

[7] R. Milner. Communicating and mobile systems:
the π-Calculus . Cambridge University Press,
1999.

6

