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Formal Molecular Biology

Introduction & Motivation

Introduction

Goal: apply formal methods to describe and analyze biological
networks at the molecular level

To do so, define a formal language for proteins interaction: the
κ-calculus
Then try to define a finer-grained model based on this
language: the mκ-calculus
Finally encode mκ-calculus into π-calculus
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Introduction & Motivation

For this presentation...

Today we will focus on the first and second languages, the
κ-calculus and the mκ-calculus.
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General Considerations & Motivations

The cell is a billion moving pieces implementing life

Sugar
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General Considerations & Motivations

With energy, the cell can detect, collect and compare signals
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Introduction & Motivation

General Considerations & Motivations

With energy, the cell can detect, collect and compare signals

signal
signal

signal

⇒ lots of interaction when considering networks of cells!
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Introduction & Motivation

More Motivations!

Computation in a cell is concurrent and asynchronous

⇒ The cell needs to implement synchronisation

The system semantic depends on stochastic responses but
looks deterministic at macroscopic level

Values are continuous, but discrete states and choices can be
considered

⇒ some work for specialists in concurrency!
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Introduction & Motivation

A Visual Notation for κ-Calculus

Let’s try to define a visual notation for κ-calculus based on
proteins

We need to express the combinatorics of the interaction
between proteins

⇒ Abstract the real proteins!
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A Visual Notation for κ-Calculus
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Definition (Sites)

Points of connection to a
protein.

bound site
hidden site
visible site
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Proteins Interactions
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We can connect proteins to create complexes

Collections of proteins and complexes are called solutions

When the solution has a special shape (= reactant), it can
evolve by means of reactions
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Connection Examples
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Examples of Reactions

Activation
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Examples of Reactions

Complexation
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Possible Reactions

Previous activation example shows multiple reaction in one
step. Not possible as such in reality

We should not be able to activate a site without contact
between proteins
We cannot consider such reaction as a primitive for κ-calculus

κ-calculus will roughly only be about complexations and
decomplexations
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Other Forbidden Atomic Reaction

Edge-flipping
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Other Forbidden Atomic Reaction

Previous edge-flipping breaks monotonicity

⇒ We should not create and edge and remove another at the
same time
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The κ-Calculus

Syntax

κ-calculus

Now that we have had a visual approach to the calculus, let’s
see an algebraic notation

Try to stay in the classical style of the π-calculus

We will only need parallel composition & name creation
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The κ-Calculus

Syntax

The Syntax of κ-Calculus

The syntax relies on

a countable set of protein names P, ranged over by A, B,
C , . . .

a countable set of edge names E , ranged over by x , y , z , . . .

a signature map, written s, from P to natural number N.

⇒ s(A) is the number of sites of A and the pair (A, i) is a site
of A
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The κ-Calculus

Syntax

Interface

Definition (Interface)

Partial map from N to E ∪ {h,v} ranged over by ρ, σ, . . .
A site (A, i) is said to be:

visible if ρ(i) = v

hidden if ρ(i) = h

bound if ρ(i) ∈ E

Interface are used to depict partial states of A’s sites.

interface ≈ state, but with that notation, we emphasize the notion
of interaction capabilities of the protein.
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The κ-Calculus

Syntax

Example of Interface

if A is such that s(A) = 3, then ρ(1) = v , ρ(2) = h, ρ(3) = x is a
well defined interface map for A that declares site 1 to be visible,
site 2 to be hidden and site 3 to be bound to some name x .
We write:

ρ = 1 + 2 + 3x
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The κ-Calculus

Syntax

Syntax of a Solution S

S := solution
0 empty solution

A(ρ) protein
S, S group

(νx)(S) new
Abbreviation: (νx1, . . . , xn)(S) or (νx̃)(S) instead of
(νx1). . . (νxn)(S)
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The κ-Calculus

Syntax

Syntax

The “new” operator is a binder: in (νx)(S), S is the scope of
the binder (νx)

We inductively define the set fn(S) of free names in a solution
S:

fn(0) = ∅
fn(A(ρ)) = fn(ρ)
fn(S,S ′) = fn(S) ∪ fn(S ′)

fn((νx)(S)) = fn(S) \ {x}
An occurrence of x in S is bound if it occurs in a sub-solution
which is in the scope of the binder x .

A solution S is closed if all occurrences of names in S are
bound (≈ if fn(S) = ∅).
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The κ-Calculus

Syntax

Example

S = C (1x + 2), (νx)(A(1x + 2 + 3),B(1 + 2x))

both occurrences of x in A and B are bound, while the occurrence
in C is outside the scope of (νx), and hence is not bound in S.
fn(S) = {x}, and S is not closed.
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The κ-Calculus

Syntax

Structural Congruence

We now have a precise but too much rigid notation:

⇒ it separates solutions that we do not want to distinguish for
semantic reasons

Introduce an equivalence relation between solutions, the
structural congruence
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The κ-Calculus

Syntax

Definition of Structural Congruence

Definition (Structural Congruence)

Structural congruence, written ≡, is the least equivalence closed
under syntactic conditions, containing α-equivalence (injective
renaming of bound variables), taking “,” to be associative (as the
choice of symbols suggests) and commutative, with 0 as neutral
element, and satisfying the scope laws:

(νx)(νy)(S) ≡ (νy)(νx)(S),
(νx)(S) ≡ S when x 6∈ fn(S),

(νx)(S), S’ ≡ (νx)(S, S’) when x 6∈ fn(S ′).

For example, we have that

S = C (1x + 2), (νx)(A(1x + 2 + 3), B(1 + 2x))
≡ (νy)C (1x + 2), (A(1y + 2 + 3), B(1 + 2y )) = T
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The κ-Calculus

Syntax

Using structural congruence, we can define connectedness:

A(ρ) is connected;

if S is connected so is (x)(S)

if S and S ′ are connected and fn(S)∩ fn(S ′) 6= ∅ then S,S ′ is
connected;

if S is connected and S ≡ T then T is connected.
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The κ-Calculus

Syntax

Graph-likeness

The language defined up to now allows to define objects that
we would not be able to draw as graph

For instance, in (νx)(A(1x)), x would bind only one site of the
protein...

⇒ We need to put some more restriction on the language
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The κ-Calculus

Syntax

Graph-likeness

Definition (Graph-likeness)

A solution is said to be graph-like iff:

free names occur at most twice in S;

binders in S bind either zero or two occurrences.

if in addition free names occurs exactly twice in S, we say that S is
strongly graph-like.
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The κ-Calculus

Syntax

From Graph-like Solutions to Graph With Sites

Definition (J.Kg )

Let J.Kg be the following function from graph-like solutions to
graphs with sites:

JA(ρ)Kg is the graph with a single node labeled A, sites in
{1, . . . , s(A)}, bound sites k being labeled by ρ(k), and free
sites being in the state prescribed by ρ;

JS,S ′Kg is the union graph of JSKg and JS ′Kg , with sites
labeled with the same name being connected by an edge, and
their common name erased;

J(νx)(S)Kg is JSKg .
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The κ-Calculus

Syntax

Examples (1)
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(νx)(A(1x + 2x + 3 + 4))
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The κ-Calculus

Syntax

Examples (2)
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(νwxyz)(A(1x+2x+3),B(1z+2+3y ),C (1+2+3z+4w ),D(1w+2x))
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The κ-Calculus

Syntax

Examples (3)
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(νxy)(A(1 + 2 + 3x + 4y ),B(1 + 2 + 3y + 4x))
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The κ-Calculus

More Definitions & Properties

The Growth Relation ≤ (I): Motivation

Why define growth relation?

Restrict possible reactions

Later, define monotonicity for reactions using growth relation

The growth relation ≤
Defined (now) on partial interfaces

Interpretation:
ρ ≤ ρ′ =̂ ρ′ has more connections than ρ

Parametrized by set of names x̃

x̃ represents the new edges of the interface
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The κ-Calculus

More Definitions & Properties

The Growth Relation ≤ (II): Inductive Definition

(create):
x ∈ x̃

x̃ ` ı ≤ ıx

(hv-switch):
x̃ ` ı̄ ≤ ı

(vh-switch):
x̃ ` ı ≤ ı̄

(reflex):
x̃ ∩ fn(ρ) = ∅

x̃ ` ρ ≤ ρ

(sum):
x̃ ` ρ ≤ ρ′ x̃ ` σ ≤ σ′

x̃ ` ρ + σ ≤ ρ′ + σ′
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The κ-Calculus

More Definitions & Properties

The Growth Relation ≤ (III): Comments

Suppose x̃ ` ρ ≤ ρ′.

Only visible sites in ρ can be bound in ρ′

Unbound sites in ρ can be toggled from visible to hidden and
conversely in ρ′

dom(ρ) = dom(ρ′), i.e., both interface describe same sites

Sites bound in ρ can’t be unbound in ρ′

Created edges in ρ′ have to belong to x̃ and their names must
be fresh (not used in ρ)

≤ is not transitive
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The κ-Calculus

More Definitions & Properties

The Growth Relation ≤ (IV): Extension

≤ defined only on (partial) interfaces

Extend definition to groups of proteins

Definition (Pre-Protein)

A pre-protein A(ρ) is a protein defined by a partial interface ρ, i.e.
not all sites of A are described in ρ.

⇒ Write proteins more concisely

Definition (Pre-Solution)

A pre-solution is a group of pre-proteins.

⇒ Describe only sites that are involved in a reaction
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The κ-Calculus

More Definitions & Properties

The Growth Relation for Pre-Solutions (I)

We extend the growth relation to pre-solutions:

(nil):
x̃ ` 0 ≤ 0

(0 is the empty solution)

(group):
x̃ ` S ≤ S ′ x̃ ` ρ ≤ ρ′ dom(ρ′) ⊆ s(A)

x̃ ` S,A(ρ) ≤ S ′,A(ρ′)

(synth):
x̃ ` S ≤ S ′ fn(ρ) ⊆ x̃ dom(ρ) = s(A)

x̃ ` S ≤ S ′,A(ρ)

S,A(ρ) is the (pre-)solution S ′ obtained
by the addition of A(ρ) to S.
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The κ-Calculus

More Definitions & Properties

The Growth Relation for Pre-Solutions (II): Comments

Suppose x̃ ` S ≤ S ′.
Interpretation: new edges have been created in S ′

The (synth) rule also allows creation of new proteins (with
full interfaces)

Lemma: fn(S) = fn(S ′) \ x̃ and fn(S ′) ⊆ fn(S) ∪ x̃

Proof: Induction on definition of ≤ for interfaces. Induction
on definition of ≤ for pre-solutions.
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The κ-Calculus

Reactions & Transition Systems

Biological Reactions (I): Definition

Let S,S ′ be two pre-solutions.

r1 : S → (νx̃)S ′ is a monotonic reaction iff:

x̃ ` S ≤ S ′

S and (νx̃)S ′ are graph-like

S ′ is connected

Lemma: fn(S) = fn((ν s̃)S ′) def
= fn(r1)

r2 : (νx̃)S → S ′ is an antimonotonic reaction iff:

its dual S ′ → (νx̃)S is monotonic

Lemma: fn((νx̃)S) = fn(S ′) def
= fn(r2)

A reaction which is either monotonic or antimonotonic is called a
biological reaction.
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The κ-Calculus

Reactions & Transition Systems

Biological Reactions (II): Comments

The left handside solution of a biological reaction is called the
reactant and the right handside the product.

A monotonic reaction only creates new bounds and/or
proteins in the solution

Its product must be connected, i.e., bound

Similarly, an antimonotonic reaction only deletes bounds
and/or proteins

Its reactant must be connected

Bound names of a biological reaction are the created/deleted
edges

Free names correspond to the untouched bounds
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The κ-Calculus

Reactions & Transition Systems

Biological Reactions (III): Interpretation & Justification

Monotonicity and antimonotonicity (incl. connectedness
requirement) impose serious restrictions on possible reactions.

Trying to define a reaction as atomically as possible

Must not “hide” certain aspects of a reaction in the syntax,
make as many biological/chemical “transitions” as possible
explicitly visible directly in κ

Example: edge-flipping reaction. Lacks monotonicity; we are
not told everything

More complex reactions described through transition systems

Is it atomic enough? Why not model only binary interactions?

⇒ mκ-calculus does this
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The κ-Calculus

Reactions & Transition Systems

Renamings

Definition (Renaming)

A renaming r is a partial finite injection on E ∪ {h, v}, which is the
identity on {h, v} and maps E onto E .

Allows to rename protein bounds without touching the hidden
or visible sites
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The κ-Calculus

Reactions & Transition Systems

Matching Biological Reactions (I): Definition1

Definition (Matching solutions (monotonic))

Let R→ (νx̃)P be a monotonic reaction, and S, T be two
solutions.

S, T match R→ (νx̃)P ⇔ S, T |= R→ (νx̃)P
⇔ S contains the same number of proteins as R,

T contains the same number of proteins as P,
∃ a renaming r and, ∀ proteins ∃ partial interfaces ξi , such
that interfaces in S and T are equal to those in P and R
renamed with r and extended with ξi
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The κ-Calculus

Reactions & Transition Systems

Matching Biol. Reactions (II): Def.2 & Interpretation

Definition (Matching solutions (antimonotonic))

Let (νx̃)R→ P be a monotonic reaction, and S, T be two
solutions.

S, T match (νx̃)R→ P ⇔ S, T |= (νx̃)R→ P
⇔ T ,S |= P → (νx̃)R

S, T |= R→ (νx̃)P means:

S and T are two solutions which can be partially described
using the pre-solutions R and P (incl. possible renamings)

The solution S can be transformed to a solution T using the
biological reaction specified by R→ (νx̃)P
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Reactions & Transition Systems

The Transition Relation →R (I)

The transition relation →R

is defined on solutions

is parametrized by a set of known biological reactions R
allows to derive all possible output solutions given an input
solution and a set of biological reactions

Definition (R-system)

Given a set of biological reactions, the associated R-system is the
pair (S,→R), where S is the set of all solutions, and →R the
transition relation as defined by the following rules...
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The κ-Calculus

Reactions & Transition Systems

The Transition Relation →R (II)

Given a set of biological reactions R:

(mon):
S, T |= R→ (νx̃)P ∈ R

S →R T

(antimon):
S, T |= (νx̃)R→ P ∈ R

S →R T

(new):
S →R T

(νx)S →R (νx)T

(group):
S →R T

S,U →R T ,U

(struct):
S →R T S ≡ S ′ T ≡ T ′

S ′ →R T ′
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Reactions & Transition Systems

The Transition Relation →R (III): Properties

Given a set of biological reactions R, suppose S →R T . Then:

1 Occurrences of free names are in bijection between S and T
(Interpretation: free names are preserved by a biological
reaction, i.e., all created/deleted edges correspond to bound
names and other edges are untouched)

2 S is graph-like ⇔ T is graph-like

(Interpretation: biological reactions preserve the
graph-likeness property of solutions)

Proof Idea. Induction on the definition of →R. Easy to show that
(new), (group) and (struct) preserve the properties. Harder
for (mon) and (antimon). Use definition of renaming r and of
matching |=.
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The κ-Calculus

κ Summary

κ-Calculus: Summary (I)

κ syntax is derived from graphical notation

⇒ Always possible to visualize a formula graphically

Interfaces model a protein’s state

Free sites can be visible or hidden
Bound sites are associated with a name

Properties: solutions can be (strongly) graph-like and/or
connected
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The κ-Calculus

κ Summary

κ-Calculus: Summary (II)

Growth relation ≤ defined on (partial) interfaces, pre-proteins
and pre-solutions

⇒ Used to impose conditions on how atomic reactions should
look like

Biological reactions:

Monotonic: R → (νx̃)P, edges are created
Antimonotonic: (νx̃)R → P, edges are deleted

⇒ Define the two possible atomic reactions for pre-solutions in κ

Matching solutions and transition relation →R on solutions

⇒ Relies on the concept of biological reaction defined on
pre-solutions to define possible transitions between solution or
solution groups
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

The mκ-Calculus

Finer-grained language, less idealized molecular biology

“Bridge” between κ-calculus and π-calculus

Always only binary interactions

Implement κ in mκ

Later, implement mκ in π

Describe:

Syntactic changes in mκ
New rules for transition relation →
From κ to mκ, the monotonic protocol

Prove:

Simulation of κ by mκ using the monotonic protocol
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Informal Comparison of mκ with κ

κ-calculus mκ-calculus

Proteins with sites Agents with extended sites

Sites on proteins Extended sites:
ability to store an number

Interfaces: Extended interfaces:
N → E ∪ {h, v} N → (E ∪ G ∪ {h, v})× N
“Reactions” “Interactions”
possibly several proteins at most two agents at a time

Sites are given an additional state called the log

Interface are updated to include the sites’ log

Sites can now also be bound by group names belonging to G
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From κ to mκ, New Notations & Definitions

Implementing κ in mκ (I)

A κ reaction can be implemented in mκ

mκ allows only binary interactions

Arity of κ not limited by transition relation

⇒ Decompose κ reaction into several mκ interactions

Keep properties of κ reactions

Define a protocol for conversion of reactions

Protocol for monotonic reactions
Protocol for antimonotonic reactions

Examine the → rules for the monotonic protocol
then illustrate with a non-trivial example
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From κ to mκ, New Notations & Definitions

Implementing κ in mκ (II)

Reaction is decomposed in a two-phase interaction series:

1 Recruitment. A signal is sent from an initiator agent (a
chosen protein) down to recruit and reserve the other agents
needed for the reaction (which will enter a special state in
mκ); a success signal is then sent back

2 Completion. Now the reaction cannot fail; this information is
propagated down again to let the agents project back to
κ-identical proteins

⇒ Use micro-scenario to propagate signal along agents

We need extended possibilities to:

Mark agents as “reserved” for the current reaction

Know for each agent in which phase we currently are

⇒ Use an extended interface and group names to describe agents



Formal Molecular Biology
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From κ to mκ, New Notations & Definitions

Extended Interfaces (I): Notation

Definition (Extended interface)

An extended interface (θ, ρ, σ, etc.) is a map from N to
(E ∪ G ∪ {h, v})× N

Definition ((mκ) Agent)

An agent is a pair, e.g. written A(θ),
with A ∈ P and θ: an extended interface.

Suppose a protein A with three sites, labeled 1 through 3.

Extended interface: θ = {1 7→ (x , 1), 2 7→ (r , 0), 3 7→ (h, 0)}
“+” Notation: A(1x ,1 + 2r ,0 + 3̄0)

Non-null notation: A(1x ,1 + 2r + 3̄)

⇒ κ’s notation is now a special case of mκ’s
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Extended Interfaces (II): Projection

The log part of the extended interface is left out
by the projection map [·]− defined as follows:

Sites bound with an edge name project to bound sites
[ıx ,n]− = ıx

Sites bound with a group name project to visible sites
[ır ,n]− = [ıv ,n]− = [ın]− = ıv = ı

Hidden sites project to hidden sites
[ıh,n]− = [̄ın]− = ıh = ı̄

Projection is extended to interfaces, agents and solutions
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Interactions

Recall that only two agents may interact at a time in mκ.

Definition ((Anti)monotonic interaction)

With R,P two pre-solutions, R→ P is a monotonic
(resp. an antimonotonic) interaction iff:

1 R and P consist of at most two agents

2 fn(R) ⊇ fn(P) (i.e., no new unbound name in P)

3 bn(R) ∩ G = ∅ (G = set of group names)

4 its projection [R]− → [P]− is monotonic
(resp. antimonotonic) in κ
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Micro-scenario (I)

Definition (Micro-scenario)

A micro-scenario for a monotonic reaction r : R→ (νx̃)P is a
tuple (Fr, Tr, init), where:

Fr: flow graph. A directed acyclic version of JPKg
(the graph of the products)

Used to recreate all bounds from the original reaction

Tr: tree spanning the flow graph Fr

(a version of Fr where each node has only one parent)

Used in the recruitment phase to contact all agents
once and only once

init is the common root of both Fr and Tr

Used to initiate the phases

Multiple micro-scenarios always exists for each reaction in κ
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Micro-scenario (II): Properties

Define F∗
r as the reverse flow graph, which corresponds to the

reverse orientation of Fr

⇒ dom(Fr) ∪ dom(F∗
r ) = all connected nodes from P

Flow graph Fr can be decomposed uniquely into Tr ∪ T c
r

⇒ T c
r is empty iff Fr is a tree

Fr is a tree iff no proteins in the products P are bound
cyclically

Notation:

(a, i) 6∈ dom(Fr) ⇔ Fr(a, i)
def
= ⊥

(also valid for F∗
r and Tr)
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The mκ-Calculus

From κ to mκ, New Notations & Definitions

Signal Ordering Relation �

Motivation: define an order over sites in order to have a
well-defined propagation path for signals used in the monotonic
protocol. Use it for proofs.

Definition (Signal ordering)

The relation over sites � is defined as the least transitive relation
such that:

Fr(a, i) = (b, j) ⇒ (a, i) � (b, j)

F∗
r (a, i) 6= ⊥︸ ︷︷ ︸

(a,i) is an input

∧ Fr(a, j) 6= ⊥︸ ︷︷ ︸
(a,j) is an output

⇒ (a, i) � (a, j)

� is a strict partial order on sites



Formal Molecular Biology

The mκ-Calculus

From κ to mκ, New Notations & Definitions

New “Group” Site; in and out Interfaces

Extend agents’ interfaces with new site ∗: JA(σ)Km = A(∗+ σ)

“Mark” agents recruited for a new reaction attempt

Notation: A(∗r ,a + σ)
def
= Ar ,a(σ)

r : group name; a: agent role in attempted reaction

Notation: in and out interfaces. With x̃ = (x1, x2, · · · , xk):

inx̃ ,n
a

def
=

⋃
{i |F∗

r (a,i) 6=⊥}

ixi ,n

outx̃ ,n
a

def
=

⋃
{i |Fr(a,i) 6=⊥}

ixi ,n
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Implementation of κ: The Monotonic Protocol

The Monotonic Protocol, Rules1 (I)

Initiation and first contacts:

(init):
a = init(Fr)

A(σ) → (νr)(Ar ,a(σ′))

(FC1):
Tr(a, i) = (b, j) x ∈ fn(r)

Ar ,a(inỹ ,1
a + ix),B(jx + σ) → Ar ,a(inỹ ,1

a + ix,1),B r ,b(jx,1 + σ′)

(FC2):
Tr(a, i) = (b, j) x 6∈ fn(r) b ∈ R

Ar ,a(inỹ ,1
a + i),B(j + σ) → (νx)

(
Ar ,a(inỹ ,1

a + ix,1),B r ,b(jx,1 + σ′)
)

(FC3):
Tr(a, i) = (b, j) x 6∈ fn(r) b 6∈ R

Ar ,a(inỹ ,1
a + i) → (νx)

(
Ar ,a(inỹ ,1

a + ix,1),B r ,b(jx,1 + σ)
)
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Implementation of κ: The Monotonic Protocol

The Monotonic Protocol, Rules1 (II): Interpretation

(Initiation and first contacts)

Always begin with (init), mark first agent (all other rules
need a marked agent)

With (FC1,2,3), contact all agents once (using the tree Tr)
and mark them

Change free sites when needed from h to v or from v to h
(when going from σ to σ′)

(FC1): contact agent B using an already existing edge in R
(FC2): contact agent B, creating a new edge from A to B

(FC3): agent B does not exist yet, create it and mark it

Always set the log of visited sites to 1
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The Monotonic Protocol, Rules2 (I)

Later contacts and responses:

(LC1):
T c

r (a, i) = (b, j) x ∈ fn(r)
Ar ,a(inỹ ,1

a + ix),B r ,b(jx) → Ar ,a(inỹ ,1
a + ix,1),B r ,b(jx,1)

(LC2):
T c

r (a, i) = (b, j) x 6∈ fn(r)
Ar ,a(inỹ ,1

a + ix),B r ,b(j) → (νx)
(
Ar ,a(inỹ ,1

a + ix,1),B r ,b(jx,1)
)

(R):
Fr(a, i) = (b, j)

Ar ,a(ix,1),B r ,b(jx,1 + outỹ ,2
b ) → Ar ,a(ix,2),B r ,b(jx,2 + outỹ ,2

b )
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Implementation of κ: The Monotonic Protocol

The Monotonic Protocol, Rules2 (II): Interpretation

(Later contacts)

All agents are now marked, we need to log 1 on sites that
were not visited using Tr

With (LC1,2), use the complementary tree T c
r to traverse the

remaining sites

(LC1): use an already existing edge in R
(LC2): create a new edge from A to B

(Responses)

With (r), propagate the success signal (by setting the logs to
2) from the bottom of Fr up to init

Agents are only allowed to propagate the signal when they
have received it from all children
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Implementation of κ: The Monotonic Protocol

The Monotonic Protocol, Rules3 (I)

Completions:

(shift):
a = init(Fr)

Ar ,a(outỹ ,2
a ) → Ar ,a(outỹ ,3

a )

(i-ppg):
a = init(Fr) Fr(a, i) = (b, j)

Ar ,a(ix,3),B r ,b(jx,2) → Ar ,a(ix,4),B r ,b(jx,3)

(ppg):
a 6= init(Fr) Fr(a, i) = (b, j)

Ar ,a(inỹ ,3
a + ix,2),B r ,b(jx,2) → Ar ,a(inỹ ,3

a + ix,3),B r ,b(jx,3)

(i-exit):
a = init(Fr)

Ar ,a(outx̃,4
a ) → A(o x̃

a )

(exit):
a 6= init(Fr)

Ar ,a(inỹ ,3
a + outz̃,3

a ) → A(ıỹa + o z̃
a )
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Implementation of κ: The Monotonic Protocol

The Monotonic Protocol, Rules3 (II): Interpretation

(Completions)

When the success signal reaches init, all its output have log 2,
agents are marked and reaction can’t fail

Now: propagate the completion signal down (log = 3) and
project the agents to κ proteins

(shift) initiates the completion phase on init

(i-ppg) and (ppg) propagate the signal (resp. for init and for
other agents)

Agents may only propagate the signal when they have
received it from all parents

(i-exit) and (exit) project the agents back to κ proteins

Agents may only project when they have propagated the
signal to all children
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The Monotonic Protocol, Example (I): rex

Suppose the following monotonic κ reaction rex :

A

D

B
x

2

1

1

y

2

2

4

C13
3

1

4

2

3

A

D

B
x

2

1

1

y

2

2

4

Cz 13
3

1

4

2

3
u

(νzu)

A(1x +2y +3+4),B(1+2x),C (1+2+ 3̄),D(1+2y +3+ 4̄) →
(νzu)

(
A(1x +2y +3z + 4̄),B(1+2x),C (1z +2u +3),D(1+2y +3u + 4̄)

)
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Example (II): Micro-scenario for rex , Defining Frex

Possible micro-scenario for rex : (Frex , Trex , init)

Frex : acyclic orientation of the graph of the products of rex

B 2

A
1 2

3

C1
2

D
2 3

Frex = {(A, 1) 7→ (B, 2), (A, 2) 7→ (D, 2), (A, 3) 7→ (C , 1), (C , 2) 7→ (D, 3)}
F∗

rex = {(B, 2) 7→ (A, 1), (D, 2) 7→ (A, 2), (C , 1) 7→ (A, 3), (D, 3) 7→ (C , 2)}
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Example (III): Micro-scenario for rex , Def. Trex and init

Trex : tree spanning Frex

B 2

A
1

3

C1
2

D 3

Trex = {(A, 1) 7→ (B, 2), (A, 3) 7→ (C , 1), (C , 2) 7→ (D, 3)}
T c

rex = Frex \ Trex = {(A, 2) 7→ (D, 2)}

init = common root of Frex and Trex
def
= A
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Example (IV): Transitions1

B 2

A
1 2

3

C1
2

D
2 31

4

3

1

4

x
x

x
y

y

y

Start situation: this is a κ solution
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Example (V): Transitions2

T c
rex

Trex

B 2

A
1 2

3

C1
2

D
2 31

4

3

1

4
r,a

(νr)
x

x

x

y

y

y

(init): A(1x + 2y + 3 + 4︸ ︷︷ ︸
σ

) → (νr)(Ar ,a(1x + 2y + 3 + 4̄︸ ︷︷ ︸
σ′

))

σ 6= σ′, i.e., there were changes in free sites:
(a, 4) has switched from v to h
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Example (VI): Transitions3

T c
rex

Trex

B 2

A
1 2

3

C1
2

D
2 31

4

3

1

4

x,1
r,a

x,1
x

(νr) r,b

y

y

y

(FC1): Ar ,a(

ix︷︸︸︷
1x +2y + 3 + 4),B(

σ︷︸︸︷
1 +

jx︷︸︸︷
2x )

→ (Ar ,a(1x ,1︸︷︷︸
ix,1

+2y + 3 + 4̄),B r ,b( 1︸︷︷︸
σ′

+ 2x ,1︸︷︷︸
jx,1

))

inỹ ,1
a = ∅; σ = σ′, i.e., no change in free sites (h to v or v to h)
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Example (VII): Transitions4

T c
rex

Trex

B 2

A  
1 2

3 

C1
2

D
2 31

4

3

1

4

x,1
r,a

x,1
x

(νrz) r,b
z

r,c

z,1

z,1

y

y

y

(FC2): Ar ,a(1x ,1 + 2y +

i︷︸︸︷
3 +4̄),C (

j︷︸︸︷
1 +

σ︷ ︸︸ ︷
2 + 3̄)

→ (νz)(Ar ,a(1x ,1 + 2y + 3z,1︸︷︷︸
iz,1

+4̄),C r ,c(1z,1︸︷︷︸
jz,1

+2 + 3︸ ︷︷ ︸
σ′

))

σ 6= σ′: (c , 4) has switched from h to v
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Example (VIII): Transitions5

T c
rex

Trex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,1
r,a

x,1
x

(νrzu) r,b
z

r,c

z,1

z,1

u

u,1

u,1r,d

y

y

y

(FC2): C r ,c(

inỹ,1
c︷︸︸︷

1z,1 +

i︷︸︸︷
2 +3),D(

σ︷ ︸︸ ︷
1 + 2y + 4̄ +3)

→ (νu)(C r ,c(1z,1︸︷︷︸
inỹ,1

c

+ 2u,1︸︷︷︸
iu,1

+3),Dr ,d(1 + 2y + 4̄︸ ︷︷ ︸
σ′

+3u,1))

σ = σ′
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Example (IX): Transitions6

T c
rex

Trex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,1
r,a

x,1
x

(νrzu) r,b
z

r,c

z,1

z,1

u

u,1

u,1r,d

y,1

y,1

y

(LC1): Ar ,a(1x ,1 +

iy︷︸︸︷
2y +3z,1 + 4̄),Dr ,d(1 +

jy︷︸︸︷
2y +3u,1 + 4̄)

→ Ar ,a(1x ,1 + 2y ,1︸︷︷︸
iy,1

+3z,1 + 4̄),Dr ,d(1 + 2y ,1︸︷︷︸
jy,1

+3u,1 + 4̄)

inỹ ,1
a = ∅
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Example (X): Transitions7

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,1
r,a

x,1
x

(νrzu) r,b
z

r,c

z,1

z,1

u

u,2

u,2r,d

y,1

y,1

y

Frex = Trex ∪ T c
rex

(R): C r ,c(1z,1 +

iu,1︷︸︸︷
2u,1 +3),D(1 + 2y ,1 +

ju,1︷︸︸︷
3u,1 +4̄)

→ C r ,c(1z,1 + 2u,2︸︷︷︸
iu,2

+3),D(1 + 2y ,1 + 3u,2︸︷︷︸
ju,2

+4̄)

outỹ ,2
d = ∅
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Example (XI): Transitions8

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,1
r,a

x,1
x

(νrzu) r,b
z

r,c

z,1

z,1

u

u,2

u,2r,d

y,2

y,2

y

Frex

(R): Ar ,a(1x ,1 +

iy,1︷︸︸︷
2y ,1 +3z,1 + 4̄),D(1 +

jy,1︷︸︸︷
2y ,1 +3u,2 + 4̄)

→ Ar ,a(1x ,1 + 2y ,2︸︷︷︸
iy,2

+3z,1 + 4̄),D(1 + 2y ,2︸︷︷︸
jy,2

+3u,2 + 4̄)

outỹ ,2
d = ∅
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Example (XII): Transitions9

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,2
r,a

x,2
x

(νrzu) r,b
z

r,c

z,1

z,1

u

u,2

u,2r,d

y,2

y,2

y

Frex

(R): Ar ,a(

ix,1︷︸︸︷
1x ,1 +2y ,2 + 3z,1 + 4̄),B(1 +

jx,1︷︸︸︷
2x ,1 )

→ Ar ,a(1x ,2︸︷︷︸
ix,2

+2y ,2 + 3z,1 + 4̄),B(1 + 2x ,2︸︷︷︸
jx,2

)

outỹ ,2
b = ∅
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Example (XIII): Transitions10

Frex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,2
r,a

x,2
x

(νrzu) r,b
z

r,c

z,2

z,2

u

u,2

u,2r,d

y,2

y,2

y

(R): Ar ,a(1x ,2 + 2y ,2 +

iz,1︷︸︸︷
3z,1 +4̄),C r ,c(

jz,1︷︸︸︷
1z,1 +

outỹ,2
c︷︸︸︷

2u,2 +3)
→ Ar ,a(1x ,2 + 2y ,2 + 3z,2︸︷︷︸

iz,2

+4̄),C r ,c(1z,2︸︷︷︸
jz,2

+ 2u,2︸︷︷︸
outỹ,2

c

+3)

(For the rest of the example, we will use only partial interfaces)
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Example (XIV): Transitions11

Frex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,3
r,a

x,2
x

(νrzu) r,b
z

r,c

z,3

z,2

u

u,2

u,2r,d

y,3

y,2

y

(shift): Ar ,a(1x ,2 + 2y ,2 + 3z,2︸ ︷︷ ︸
outỹ,2

a

) → Ar ,a(1x ,3 + 2y ,3 + 3z,3︸ ︷︷ ︸
outỹ,3

a

)
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Example (XV): Transitions12

Frex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,4
r,a

x,3
x

(νrzu) r,b
z

r,c

z,4

z,3

u

u,2

u,2r,d

y,4

y,3

y

(i-ppg): Ar ,a(1x ,3),B(2x ,2) → Ar ,a(1x ,4),B(2x ,3)

(i-ppg): Ar ,a(2y ,3),D(2y ,2) → Ar ,a(2y ,4),D(2y ,3) each with a = init

(i-ppg): Ar ,a(3z,3),C (1z,2) → Ar ,a(3z,4),C (1z,3)
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Example (XVI): Transitions13

Frex

B 2

A  
1 2

3 

C1
2

D   
2 3  1

4

3

1

4

x,4
r,a

x,3
x

(νrzu) r,b
z

r,c

z,4

z,3

u

u,3

u,3r,d

y,4

y,3

y

(ppg): C r ,c(1z,3︸︷︷︸
inỹ,3

c

+ 2u,2︸︷︷︸
iu,2

),Dr ,d(3u,2) → C r ,c(1z,3︸︷︷︸
inỹ,3

c

+ 2u,3︸︷︷︸
iu,3

),Dr ,d(3u,3)

c 6= init
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Example (XVII): Transitions14

B 2

A
1 2

3

C1
2

D   
2 3  1

4

3

1

4

x,3
x

(νrzu) r,b
z

r,cz,3

u

u,3

u,3r,d
y,3

y

x
z

y

(i-exit): Ar ,a(1x ,4 + 2y ,4 + 3z,4︸ ︷︷ ︸
outỹ,4

a

) → A(1x + 2y + 3z)

a = init
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Example (XVIII): Transitions15

B 2

A
1 2

3

C1
2

D
2 31

4

3

1

4

x

(νzu)

z

u

y

x
z

y

x
z

u

uy

(exit): B r ,b(2x ,3) → B(2x)

(exit): C r ,c(1z,3 + 2u,3) → C (1z + 2u)

(exit): Dr ,d(2y ,3 + 3u,3) → D(2y + 3u)

b, c , d 6= init; restriction on r is dropped with structural congruence
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mκ-Calculus: Summary

Extended sites, extended interfaces are used in mκ

⇒ Add additional state information to agents.

⇒ κ solutions are a special case of mκ

Micro-scenario (Fr, Tr, init) are used to implement a κ
reaction in mκ. Two series of interaction:

1 Recruitment: find & mark needed agents
2 Completion: with success signal, project back to κ

⇒ The monotonic protocol
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From mκ-Calculus to π-Calculus

With its binary interaction, mκ can be implemented in π

Basic ideas:

Each agent becomes a process
Communication is asymmetric in π: decide which processes are
senders and which ones are receivers
Processes are parametrized by the agents’ interfaces
Sender sends its interface, receiver checks compatibility:

OK ⇒ Makes necessary changes and sends back updated
interface on success channel
not OK ⇒ Tells sender to abort interaction on failure channel

Conditions are expressed with π’s matches: [u = u′]P;Q

See original paper for more info:
Danos & Laneve, Formal Molecular Biology
http://www.cs.unibo.it/∼laneve/papers/fmb.pdf
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Formal Molecular Biology: Summary

Biological modeling problem

Protein interactions: concurrent, asynchronous
Define new process algebra to model protein interactions and
biological reactions

κ-Calculus

Idealized protein calculus
Easily visualizable
Allows two kinds of atomic reactions: monotonic and
antimonotonic

mκ-Calculus

Finer-grained language, extended syntax
Allows only binary interactions
κ reactions are implementable in mκ
mκ-calculus can be implemented in π-calculus


