Formal Molecular Biology
 According to V. Danos \& C. Laneve

Jérôme Caffaro
jerome.caffaro@epfl.ch
Jean-Philippe Pellet
jean-philippe.pellet@epfl.ch

18th May, 2005

Outline

(1) Introduction \& Motivation
(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary

4 Summary \& Conclusion

Introduction

- Goal: apply formal methods to describe and analyze biological networks at the molecular level
- To do so, define a formal language for proteins interaction: the κ-calculus
- Then try to define a finer-grained model based on this language: the $m \kappa$-calculus
- Finally encode $m \kappa$-calculus into π-calculus

For this presentation...

Today we will focus on the first and second languages, the κ-calculus and the $m \kappa$-calculus.

General Considerations \& Motivations

- The cell is a billion moving pieces implementing life

General Considerations \& Motivations

- With energy, the cell can detect, collect and compare signals

General Considerations \& Motivations

- With energy, the cell can detect, collect and compare signals

- \Rightarrow lots of interaction when considering networks of cells!

More Motivations!

- Computation in a cell is concurrent and asynchronous
- \Rightarrow The cell needs to implement synchronisation
- The system semantic depends on stochastic responses but looks deterministic at macroscopic level
- Values are continuous, but discrete states and choices can be considered
- \Rightarrow some work for specialists in concurrency!

A Visual Notation for κ-Calculus

- Let's try to define a visual notation for κ-calculus based on proteins
- We need to express the combinatorics of the interaction between proteins
- \Rightarrow Abstract the real proteins!

A Visual Notation for κ-Calculus

Definition (Sites)

Points of connection to a protein.

- bound site
- hidden site
o visible site

Proteins Interactions

- We can connect proteins to create complexes
- Collections of proteins and complexes are called solutions
- When the solution has a special shape (= reactant), it can evolve by means of reactions

Connection Examples

a self-
complexation

a ring-complex

a
double-contact

Examples of Reactions

Activation

Examples of Reactions

Complexation

Possible Reactions

- Previous activation example shows multiple reaction in one step. Not possible as such in reality
- We should not be able to activate a site without contact between proteins
- We cannot consider such reaction as a primitive for κ-calculus
- κ-calculus will roughly only be about complexations and decomplexations

Other Forbidden Atomic Reaction

Edge-flipping

Other Forbidden Atomic Reaction

- Previous edge-flipping breaks monotonicity
- \Rightarrow We should not create and edge and remove another at the same time

Outline

(1) Introduction \& Motivation
(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary
(4) Summary \& Conclusion

κ-calculus

- Now that we have had a visual approach to the calculus, let's see an algebraic notation
- Try to stay in the classical style of the π-calculus
- We will only need parallel composition \& name creation

The Syntax of κ-Calculus

The syntax relies on

- a countable set of protein names \mathcal{P}, ranged over by A, B, C, ...
- a countable set of edge names \mathcal{E}, ranged over by x, y, z, \ldots
- a signature map, written \mathfrak{s}, from \mathcal{P} to natural number \mathbb{N}.
- $\Rightarrow \mathfrak{s}(A)$ is the number of sites of A and the pair (A, i) is a site of A

Interface

Definition (Interface)

Partial map from \mathbb{N} to $\mathcal{E} \cup\{h, v\}$ ranged over by ρ, σ, \ldots A site (A, i) is said to be:

- visible if $\rho(i)=v$
- hidden if $\rho(i)=h$
- bound if $\rho(i) \in \mathcal{E}$

Interface are used to depict partial states of A's sites.
interface \approx state, but with that notation, we emphasize the notion of interaction capabilities of the protein.

Example of Interface

if A is such that $\mathfrak{s}(A)=3$, then $\rho(1)=v, \rho(2)=h, \rho(3)=x$ is a well defined interface map for A that declares site 1 to be visible, site 2 to be hidden and site 3 to be bound to some name x. We write:

$$
\rho=1+\overline{2}+3^{x}
$$

Syntax of a Solution \mathcal{S}

$\mathcal{S}:=$

solution

0 empty solution
$A(\rho)$ protein
\mathcal{S}, \mathcal{S} group
$(\nu x)(\mathcal{S})$ new
Abbreviation: $\left(\nu x_{1}, \ldots, x_{n}\right)(\mathcal{S})$ or $(\nu \tilde{x})(S)$ instead of $\left(\nu x_{1}\right) \ldots\left(\nu x_{n}\right)(\mathcal{S})$

Syntax

- The "new" operator is a binder: in $(\nu x)(\mathcal{S}), \mathcal{S}$ is the scope of the binder (νx)
- We inductively define the set $\mathrm{fn}(\mathcal{S})$ of free names in a solution \mathcal{S} :

$$
\begin{aligned}
\mathrm{fn}(0) & =\emptyset \\
\mathrm{fn}(A(\rho)) & =\mathrm{fn}(\rho) \\
\mathrm{fn}\left(\mathcal{S}, \mathcal{S}^{\prime}\right) & =\mathrm{fn}(\mathcal{S}) \cup \mathrm{fn}\left(\mathcal{S}^{\prime}\right) \\
\mathrm{fn}((\nu x)(\mathcal{S})) & =\mathrm{fn}(\mathcal{S}) \backslash\{x\}
\end{aligned}
$$

- An occurrence of x in \mathcal{S} is bound if it occurs in a sub-solution which is in the scope of the binder x.
- A solution \mathcal{S} is closed if all occurrences of names in \mathcal{S} are bound $(\approx$ if $\mathrm{fn}(S)=\emptyset)$.

Example

$$
\mathcal{S}=C\left(1^{x}+2\right),(\nu x)\left(A\left(1^{x}+2+\overline{3}\right), B\left(1+2^{x}\right)\right)
$$

both occurrences of x in A and B are bound, while the occurrence in C is outside the scope of (νx), and hence is not bound in \mathcal{S}. $\mathrm{fn}(\mathcal{S})=\{x\}$, and \mathcal{S} is not closed.

Structural Congruence

- We now have a precise but too much rigid notation:
- \Rightarrow it separates solutions that we do not want to distinguish for semantic reasons
- Introduce an equivalence relation between solutions, the structural congruence

Definition of Structural Congruence

Definition (Structural Congruence)

Structural congruence, written \equiv, is the least equivalence closed under syntactic conditions, containing α-equivalence (injective renaming of bound variables), taking "," to be associative (as the choice of symbols suggests) and commutative, with 0 as neutral element, and satisfying the scope laws:

$$
\begin{array}{rll}
(\nu x)(\nu y)(\mathcal{S}) & \equiv(\nu y)(\nu x)(\mathcal{S}), & \\
(\nu x)(\mathcal{S}) & \equiv \mathcal{S} & \text { when } x \notin \mathrm{fn}(\mathcal{S}) \\
(\nu x)(\mathcal{S}), \mathcal{S}^{\prime} & \equiv(\nu x)\left(\mathcal{S}, \mathcal{S}^{\prime}\right) & \text { when } x \notin \mathrm{fn}\left(\mathcal{S}^{\prime}\right)
\end{array}
$$

For example, we have that

$$
\begin{aligned}
\mathcal{S} & =C\left(1^{x}+2\right),(\nu x)\left(A\left(1^{x}+2+\overline{3}\right), B\left(1+2^{x}\right)\right) \\
& \equiv(\nu y) C\left(1^{x}+2\right),\left(A\left(1^{y}+2+\overline{3}\right), B\left(1+2^{y}\right)\right)=\mathcal{T}
\end{aligned}
$$

Using structural congruence, we can define connectedness:

- $\mathcal{A}(\rho)$ is connected;
- if \mathcal{S} is connected so is $(x)(\mathcal{S})$
- if \mathcal{S} and \mathcal{S}^{\prime} are connected and $\mathrm{fn}(\mathcal{S}) \cap \mathrm{fn}\left(\mathcal{S}^{\prime}\right) \neq \emptyset$ then $\mathcal{S}, \mathcal{S}^{\prime}$ is connected;
- if \mathcal{S} is connected and $\mathcal{S} \equiv \mathcal{T}$ then \mathcal{T} is connected.

Graph-likeness

- The language defined up to now allows to define objects that we would not be able to draw as graph
- For instance, in $(\nu x)\left(A\left(1^{x}\right)\right), x$ would bind only one site of the protein...
- \Rightarrow We need to put some more restriction on the language

Graph-likeness

Definition (Graph-likeness)

A solution is said to be graph-like iff:

- free names occur at most twice in \mathcal{S};
- binders in \mathcal{S} bind either zero or two occurrences.
if in addition free names occurs exactly twice in \mathcal{S}, we say that \mathcal{S} is strongly graph-like.

From Graph-like Solutions to Graph With Sites

Definition $\left(\llbracket \cdot \rrbracket_{g}\right)$

Let $\llbracket \cdot \rrbracket_{g}$ be the following function from graph-like solutions to graphs with sites:

- $\llbracket A(\rho) \rrbracket_{g}$ is the graph with a single node labeled A, sites in $\{1, \ldots, \mathfrak{s}(A)\}$, bound sites k being labeled by $\rho(k)$, and free sites being in the state prescribed by ρ;
- $\llbracket \mathcal{S}, \mathcal{S}^{\prime} \rrbracket_{g}$ is the union graph of $\llbracket \mathcal{S} \rrbracket_{g}$ and $\llbracket \mathcal{S}^{\prime} \rrbracket_{g}$, with sites labeled with the same name being connected by an edge, and their common name erased;
- $\llbracket(\nu x)(\mathcal{S}) \rrbracket_{g}$ is $\llbracket \mathcal{S} \rrbracket_{g}$.

The κ-Calculus
Syntax

Examples (1)

$(\nu x)\left(A\left(1^{x}+2^{x}+3+\overline{4}\right)\right)$

Examples (2)

$(\nu w x y z)\left(A\left(1^{x}+2^{x}+3\right), B\left(1^{z}+\overline{2}+3^{y}\right), C\left(1+\overline{2}+3^{z}+4^{w}\right), D\left(1^{w}+2^{x}\right)\right)$

The κ-Calculus
Syntax

Examples (3)

$$
(\nu x y)\left(A\left(\overline{1}+2+3^{x}+4^{y}\right), B\left(1+\overline{2}+3^{y}+4^{x}\right)\right)
$$

Outline

(1) Introduction \& Motivation

(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(2) The mi-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- mк Summary

4 Summary \& Conclusion

The Growth Relation \leq (I): Motivation

Why define growth relation?

- Restrict possible reactions
- Later, define monotonicity for reactions using growth relation

The growth relation \leq

- Defined (now) on partial interfaces
- Interpretation:
$\rho \leq \rho^{\prime} \widehat{=} \rho^{\prime}$ has more connections than ρ
- Parametrized by set of names \tilde{x}
- \tilde{x} represents the new edges of the interface

The Growth Relation \leq (II): Inductive Definition

$$
(\mathrm{CREATE}): \frac{x \in \tilde{x}}{\tilde{x} \vdash \imath \leq \imath^{x}}
$$

$$
(\text { HV-SWITCH }): \overline{\tilde{x} \vdash \bar{\imath} \leq \imath}
$$

$$
(\text { VH-SWITCH }): \overline{\tilde{x} \vdash \imath \leq \bar{\imath}}
$$

$$
\begin{aligned}
\text { (REFLEX): } & \frac{\tilde{x} \cap \mathrm{fn}(\rho)=\emptyset}{\tilde{x} \vdash \rho \leq \rho} \\
(\mathrm{SUM}): & \frac{\tilde{x} \vdash \rho \leq \rho^{\prime} \quad \tilde{x} \vdash \sigma \leq \sigma^{\prime}}{\tilde{x} \vdash \rho+\sigma \leq \rho^{\prime}+\sigma^{\prime}}
\end{aligned}
$$

The Growth Relation \leq (III): Comments

Suppose $\tilde{x} \vdash \rho \leq \rho^{\prime}$.

- Only visible sites in ρ can be bound in ρ^{\prime}
- Unbound sites in ρ can be toggled from visible to hidden and conversely in ρ^{\prime}
- $\operatorname{dom}(\rho)=\operatorname{dom}\left(\rho^{\prime}\right)$, i.e., both interface describe same sites
- Sites bound in ρ can't be unbound in ρ^{\prime}
- Created edges in ρ^{\prime} have to belong to \tilde{x} and their names must be fresh (not used in ρ)
- \leq is not transitive

The Growth Relation \leq (IV): Extension

- \leq defined only on (partial) interfaces
- Extend definition to groups of proteins

Definition (Pre-Protein)

A pre-protein $A(\rho)$ is a protein defined by a partial interface ρ, i.e. not all sites of A are described in ρ.
\Rightarrow Write proteins more concisely

Definition (Pre-Solution)

A pre-solution is a group of pre-proteins.
\Rightarrow Describe only sites that are involved in a reaction

The Growth Relation for Pre-Solutions (I)

We extend the growth relation to pre-solutions:

$$
\begin{aligned}
\text { (NIL): } & \frac{\tilde{x} \vdash 0 \leq 0 \quad \text { (0 is the empty solution) }}{} \\
\text { (GROUP): } & \frac{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime} \quad \tilde{x} \vdash \rho \leq \rho^{\prime} \quad \operatorname{dom}\left(\rho^{\prime}\right) \subseteq \mathfrak{s}(A)}{\tilde{x} \vdash \mathcal{S}, A(\rho) \leq \mathcal{S}^{\prime}, A\left(\rho^{\prime}\right)} \\
\text { (SYNTH): } & \frac{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime} \quad \operatorname{fn}(\rho) \subseteq \tilde{x} \quad \operatorname{dom}(\rho)=\mathfrak{s}(A)}{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}, A(\rho)}
\end{aligned}
$$

$\mathcal{S}, A(\rho)$ is the (pre-) solution \mathcal{S}^{\prime} obtained by the addition of $A(\rho)$ to \mathcal{S}.

The Growth Relation for Pre-Solutions (II): Comments

Suppose $\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}$.

- Interpretation: new edges have been created in \mathcal{S}^{\prime}
- The (SYNTH) rule also allows creation of new proteins (with full interfaces)
- Lemma: $\mathrm{fn}(\mathcal{S})=\mathrm{fn}\left(\mathcal{S}^{\prime}\right) \backslash \tilde{x}$ and $\mathrm{fn}\left(\mathcal{S}^{\prime}\right) \subseteq \mathrm{fn}(\mathcal{S}) \cup \tilde{x}$
- Proof: Induction on definition of \leq for interfaces. Induction on definition of \leq for pre-solutions.

Outline

(1) Introduction \& Motivation

(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $т \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary

4 Summary \& Conclusion

Biological Reactions (I): Definition

Let $\mathcal{S}, \mathcal{S}^{\prime}$ be two pre-solutions.
$\mathrm{r}_{1}: \mathcal{S} \rightarrow(\nu \tilde{x}) \mathcal{S}^{\prime}$ is a monotonic reaction iff:

- $\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}$
- \mathcal{S} and $(\nu \tilde{x}) \mathcal{S}^{\prime}$ are graph-like
- \mathcal{S}^{\prime} is connected
- Lemma: $\mathrm{fn}(\mathcal{S})=\mathrm{fn}\left((\nu \tilde{s}) \mathcal{S}^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{fn}\left(\mathrm{r}_{1}\right)$
$\mathrm{r}_{2}:(\nu \tilde{x}) \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ is an antimonotonic reaction iff:
- its dual $\mathcal{S}^{\prime} \rightarrow(\nu \tilde{x}) \mathcal{S}$ is monotonic
- Lemma: $\mathrm{fn}((\nu \tilde{x}) \mathcal{S})=\mathrm{fn}\left(\mathcal{S}^{\prime}\right) \stackrel{\text { def }}{=} \mathrm{fn}\left(\mathrm{r}_{2}\right)$

A reaction which is either monotonic or antimonotonic is called a biological reaction.

Biological Reactions (II): Comments

The left handside solution of a biological reaction is called the reactant and the right handside the product.

- A monotonic reaction only creates new bounds and/or proteins in the solution
- Its product must be connected, i.e., bound
- Similarly, an antimonotonic reaction only deletes bounds and/or proteins
- Its reactant must be connected
- Bound names of a biological reaction are the created/deleted edges
- Free names correspond to the untouched bounds

Biological Reactions (III): Interpretation \& Justification

Monotonicity and antimonotonicity (incl. connectedness requirement) impose serious restrictions on possible reactions.

- Trying to define a reaction as atomically as possible
- Must not "hide" certain aspects of a reaction in the syntax, make as many biological/chemical "transitions" as possible explicitly visible directly in κ
- Example: edge-flipping reaction. Lacks monotonicity; we are not told everything
- More complex reactions described through transition systems
- Is it atomic enough? Why not model only binary interactions?
- $\Rightarrow m \kappa$-calculus does this

Renamings

Definition (Renaming)

A renaming r is a partial finite injection on $\mathcal{E} \cup\{h, v\}$, which is the identity on $\{h, v\}$ and maps \mathcal{E} onto \mathcal{E}.

- Allows to rename protein bounds without touching the hidden or visible sites

Matching Biological Reactions (I): Definition ${ }_{1}$

Definition (Matching solutions (monotonic))

Let $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$ be a monotonic reaction, and \mathcal{S}, \mathcal{T} be two solutions.
\mathcal{S}, \mathcal{T} match $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P} \quad \Leftrightarrow \quad \mathcal{S}, \mathcal{T} \models \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$
$\Leftrightarrow \mathcal{S}$ contains the same number of proteins as \mathcal{R}, \mathcal{T} contains the same number of proteins as \mathcal{P}, \exists a renaming r and, \forall proteins \exists partial interfaces ξ_{i}, such that interfaces in \mathcal{S} and \mathcal{T} are equal to those in \mathcal{P} and \mathcal{R} renamed with r and extended with ξ_{i}

Matching Biol. Reactions (II): Def. 2 \& Interpretation

Definition (Matching solutions (antimonotonic))

Let $(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P}$ be a monotonic reaction, and \mathcal{S}, \mathcal{T} be two solutions.

$$
\begin{aligned}
& \mathcal{S}, \mathcal{T} \text { match }(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P} \quad \Leftrightarrow \quad \mathcal{S}, \mathcal{T} \models(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P} \\
\Leftrightarrow & \mathcal{T}, \mathcal{S} \models \mathcal{P} \rightarrow(\nu \tilde{x}) \mathcal{R}
\end{aligned}
$$

$\mathcal{S}, \mathcal{T} \equiv \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$ means:

- \mathcal{S} and \mathcal{T} are two solutions which can be partially described using the pre-solutions \mathcal{R} and \mathcal{P} (incl. possible renamings)
- The solution \mathcal{S} can be transformed to a solution \mathcal{T} using the biological reaction specified by $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$

The Transition Relation $\rightarrow_{\mathrm{R}}(\mathrm{I})$

The transition relation \rightarrow_{R}

- is defined on solutions
- is parametrized by a set of known biological reactions R
- allows to derive all possible output solutions given an input solution and a set of biological reactions

Definition (R-system)

Given a set of biological reactions, the associated R -system is the pair $\left(S, \rightarrow_{R}\right)$, where S is the set of all solutions, and \rightarrow_{R} the transition relation as defined by the following rules...

The Transition Relation \rightarrow_{R} (II)

Given a set of biological reactions R :

$$
\begin{aligned}
\text { (MON): } & \frac{\mathcal{S}, \mathcal{T} \models \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P} \in \mathrm{R}}{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}} \\
\text { (ANTIMON): } & \frac{\mathcal{S}, \mathcal{T} \models(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P} \in \mathrm{R}}{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}} \\
\text { (NEW): } & \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}}{(\nu x) \mathcal{S} \rightarrow_{\mathrm{R}}(\nu x) \mathcal{T}} \\
\text { (GROUP): } & \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}}{\mathcal{S}, \mathcal{U} \rightarrow_{\mathrm{R}} \mathcal{T}, \mathcal{U}} \\
\text { (STRUCT): } & \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T} \quad \mathcal{S} \equiv \mathcal{S}^{\prime} \quad \mathcal{T} \equiv \mathcal{T}^{\prime}}{\mathcal{S}^{\prime} \rightarrow_{\mathrm{R}} \mathcal{T}^{\prime}}
\end{aligned}
$$

The Transition Relation \rightarrow_{R} (III): Properties

Given a set of biological reactions R , suppose $\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}$. Then:
(1) Occurrences of free names are in bijection between \mathcal{S} and \mathcal{T} (Interpretation: free names are preserved by a biological reaction, i.e., all created/deleted edges correspond to bound names and other edges are untouched)
(2) \mathcal{S} is graph-like $\Leftrightarrow \mathcal{T}$ is graph-like (Interpretation: biological reactions preserve the graph-likeness property of solutions)

Proof Idea. Induction on the definition of \rightarrow_{R}. Easy to show that (NEW), (GROUP) and (STRUCT) preserve the properties. Harder for (MON) and (ANTIMON). Use definition of renaming r and of matching \vDash.

Outline

(1) Introduction \& Motivation
(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary
(4) Summary \& Conclusion

κ-Calculus: Summary (I)

- κ syntax is derived from graphical notation
\Rightarrow Always possible to visualize a formula graphically
- Interfaces model a protein's state
- Free sites can be visible or hidden
- Bound sites are associated with a name
- Properties: solutions can be (strongly) graph-like and/or connected

κ-Calculus: Summary (II)

- Growth relation \leq defined on (partial) interfaces, pre-proteins and pre-solutions
\Rightarrow Used to impose conditions on how atomic reactions should look like
- Biological reactions:
- Monotonic: $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$, edges are created
- Antimonotonic: $(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P}$, edges are deleted
\Rightarrow Define the two possible atomic reactions for pre-solutions in κ
- Matching solutions and transition relation \rightarrow_{R} on solutions
\Rightarrow Relies on the concept of biological reaction defined on pre-solutions to define possible transitions between solution or solution groups

Outline

(1) Introduction \& Motivation

(2) The κ-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary

4 Summary \& Conclusion

- Finer-grained language, less idealized molecular biology
- "Bridge" between κ-calculus and π-calculus
- Always only binary interactions
- Implement κ in $m \kappa$
- Later, implement $m \kappa$ in π
- Describe:
- Syntactic changes in $m \kappa$
- New rules for transition relation \rightarrow
- From κ to $m \kappa$, the monotonic protocol
- Prove:
- Simulation of κ by $m \kappa$ using the monotonic protocol

Informal Comparison of $m \kappa$ with κ

κ-calculus	$m \kappa$-calculus
Proteins with sites	Agents with extended sites
Sites on proteins	Extended sites: ability to store an number
Interfaces:	Extended interfaces: $\mathbb{N} \rightarrow \mathcal{E} \cup\{h, v\}$
"Reactions" possibly several proteins	"Interactions" at most two agents at a time

- Sites are given an additional state called the \log
- Interface are updated to include the sites' log
- Sites can now also be bound by group names belonging to \mathcal{G}

Implementing κ in $m \kappa$ (I)

- A κ reaction can be implemented in $m \kappa$
- $m \kappa$ allows only binary interactions
- Arity of κ not limited by transition relation
\Rightarrow Decompose κ reaction into several $m \kappa$ interactions
- Keep properties of κ reactions
- Define a protocol for conversion of reactions
- Protocol for monotonic reactions
- Protocol for antimonotonic reactions
- Examine the \rightarrow rules for the monotonic protocol then illustrate with a non-trivial example

Implementing κ in $m \kappa$ (II)

Reaction is decomposed in a two-phase interaction series:
(1) Recruitment. A signal is sent from an initiator agent (a chosen protein) down to recruit and reserve the other agents needed for the reaction (which will enter a special state in $m \kappa$); a success signal is then sent back
(2) Completion. Now the reaction cannot fail; this information is propagated down again to let the agents project back to κ-identical proteins
\Rightarrow Use micro-scenario to propagate signal along agents

We need extended possibilities to:

- Mark agents as "reserved" for the current reaction
- Know for each agent in which phase we currently are
\Rightarrow Use an extended interface and group names to describe agents

Extended Interfaces (I): Notation

Definition (Extended interface)

An extended interface (θ, ρ, σ, etc.) is a map from \mathbb{N} to $(\mathcal{E} \cup \mathcal{G} \cup\{h, v\}) \times \mathbb{N}$

Definition (($m \kappa$) Agent)

An agent is a pair, e.g. written $A(\theta)$, with $A \in \mathcal{P}$ and θ : an extended interface.

Suppose a protein A with three sites, labeled 1 through 3.

- Extended interface: $\theta=\{1 \mapsto(x, 1), 2 \mapsto(r, 0), 3 \mapsto(h, 0)\}$
- "+" Notation: $A\left(1^{x, 1}+2^{r, 0}+\overline{3}^{0}\right)$
- Non-null notation: $A\left(1^{x, 1}+2^{r}+\overline{3}\right)$
$\Rightarrow \kappa$'s notation is now a special case of $m \kappa$'s

Extended Interfaces (II): Projection

The log part of the extended interface is left out by the projection map [.]- defined as follows:

- Sites bound with an edge name project to bound sites $\left[\imath^{x, n}\right]^{-}=\imath^{x}$
- Sites bound with a group name project to visible sites

$$
\left[\imath^{r, n}\right]^{-}=\left[\imath^{v, n}\right]^{-}=\left[\imath^{n}\right]^{-}=\imath^{v}=\imath
$$

- Hidden sites project to hidden sites

$$
\left[\imath^{h, n}\right]^{-}=\left[\bar{\imath}^{n}\right]^{-}=\imath^{h}=\bar{\imath}
$$

Projection is extended to interfaces, agents and solutions

Interactions

Recall that only two agents may interact at a time in $m \kappa$.

Definition ((Anti)monotonic interaction)

With \mathcal{R}, \mathcal{P} two pre-solutions, $\mathcal{R} \rightarrow \mathcal{P}$ is a monotonic (resp. an antimonotonic) interaction iff:
(1) \mathcal{R} and \mathcal{P} consist of at most two agents
(2) $\mathrm{fn}(\mathcal{R}) \supseteq \mathrm{fn}(\mathcal{P}) \quad$ (i.e., no new unbound name in \mathcal{P})
(3) $\operatorname{bn}(\mathcal{R}) \cap \mathcal{G}=\emptyset \quad$ ($\mathcal{G}=$ set of group names)
(9) its projection $[\mathcal{R}]^{-} \rightarrow[\mathcal{P}]^{-}$is monotonic (resp. antimonotonic) in κ

Micro-scenario (I)

Definition (Micro-scenario)

A micro-scenario for a monotonic reaction $\mathrm{r}: \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$ is a tuple ($\mathcal{F}_{\mathrm{r}}, \mathcal{T}_{\mathrm{r}}$, init), where:

- \mathcal{F}_{r} : flow graph. A directed acyclic version of $\llbracket \mathcal{P} \rrbracket_{g}$ (the graph of the products)
Used to recreate all bounds from the original reaction
- \mathcal{T}_{r} : tree spanning the flow graph \mathcal{F}_{r}
(a version of \mathcal{F}_{r} where each node has only one parent)
Used in the recruitment phase to contact all agents once and only once
- init is the common root of both \mathcal{F}_{r} and \mathcal{T}_{r}

Used to initiate the phases
Multiple micro-scenarios always exists for each reaction in κ

Micro-scenario (II): Properties

- Define \mathcal{F}_{r}^{*} as the reverse flow graph, which corresponds to the reverse orientation of \mathcal{F}_{r}
$\Rightarrow \operatorname{dom}\left(\mathcal{F}_{\mathrm{r}}\right) \cup \operatorname{dom}\left(\mathcal{F}_{\mathrm{r}}^{*}\right)=$ all connected nodes from \mathcal{P}
- Flow graph \mathcal{F}_{r} can be decomposed uniquely into $\mathcal{T}_{\mathrm{r}} \cup \mathcal{T}_{\mathrm{r}}{ }^{c}$
$\Rightarrow \mathcal{T}_{\mathrm{r}}{ }^{c}$ is empty iff \mathcal{F}_{r} is a tree
\mathcal{F}_{r} is a tree iff no proteins in the products \mathcal{P} are bound cyclically

Notation:

$$
(a, i) \notin \operatorname{dom}\left(\mathcal{F}_{\mathrm{r}}\right) \quad \Leftrightarrow \quad \mathcal{F}_{\mathrm{r}}(a, i) \stackrel{\text { def }}{=} \perp
$$

(also valid for $\mathcal{F}_{\mathrm{r}}^{*}$ and \mathcal{T}_{r})

Signal Ordering Relation \succ

Motivation: define an order over sites in order to have a well-defined propagation path for signals used in the monotonic protocol. Use it for proofs.

Definition (Signal ordering)

The relation over sites \succ is defined as the least transitive relation such that:

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{r}}(a, i)=(b, j) \Rightarrow(a, i) \succ(b, j) \\
& \underbrace{\mathcal{F}_{\mathrm{r}}^{*}(a, i) \neq \perp}_{(a, i) \text { is an input }} \wedge \underbrace{\mathcal{F}_{\mathrm{r}}(a, j) \neq \perp}_{(a, j) \text { is an output }} \Rightarrow(a, i) \succ(a, j)
\end{aligned}
$$

\succ is a strict partial order on sites

New "Group" Site; IN and OUT Interfaces

Extend agents' interfaces with new site $*: \llbracket A(\sigma) \rrbracket_{m}=A(*+\sigma)$

- "Mark" agents recruited for a new reaction attempt
- Notation: $A\left(*^{r, a}+\sigma\right) \stackrel{\text { def }}{=} A^{r, a}(\sigma)$
- r : group name; a : agent role in attempted reaction

Notation: IN and out interfaces. With $\tilde{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$:

$$
\begin{aligned}
& \operatorname{IN}_{a}^{\tilde{x}, n} \stackrel{\text { def }}{=} \bigcup_{\left\{i \mid \mathcal{F}_{\mathrm{r}}^{*}(a, i) \neq \perp\right\}} i^{x_{i}, n} \\
& \operatorname{OUT}_{a}^{\tilde{x}, n} \stackrel{\text { def }}{=} \bigcup_{\left\{i \mid \mathcal{F}_{\mathrm{r}}(a, i) \neq \perp\right\}} i^{x_{i}, n}
\end{aligned}
$$

Outline

(1) Introduction \& Motivation

(2) The k-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary
(4) Summary \& Conclusion

The Monotonic Protocol, Rules ${ }_{1}$ (I)

Initiation and first contacts:
(INIT): $\frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A(\sigma) \rightarrow(\nu r)\left(A^{r, a}\left(\sigma^{\prime}\right)\right)}$
$\left(\mathrm{FC}_{1}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \in \mathrm{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{x}\right), B\left(j^{x}+\sigma\right) \rightarrow A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma^{\prime}\right)}$
$\left.\left(\mathrm{FC}_{2}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \notin \mathrm{fn}(\mathrm{r}) \quad b \in \mathcal{R}}{A^{r, a}\left(\mathrm{~N}_{\tilde{y}}, 1\right.}+i\right), B(j)$
$A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i\right), B(j+\sigma) \rightarrow(\nu x)\left(A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma^{\prime}\right)\right)$
$\left(\mathrm{FC}_{3}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \notin \mathrm{fn}(\mathrm{r}) \quad b \notin \mathcal{R}}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i\right) \rightarrow(\nu x)\left(A^{r, a}\left(\operatorname{IN}_{a}^{\tilde{y}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma\right)\right)}$

The Monotonic Protocol, Rules (II): Interpretation

(Initiation and first contacts)

- Always begin with (INIT), mark first agent (all other rules need a marked agent)
- With ($\mathrm{FC}_{1,2,3}$), contact all agents once (using the tree \mathcal{T}_{r}) and mark them
- Change free sites when needed from h to v or from v to h (when going from σ to σ^{\prime})
- (FC_{1}): contact agent B using an already existing edge in \mathcal{R}
- $\left(\mathrm{FC}_{2}\right)$: contact agent B, creating a new edge from A to B
- (FC_{3}): agent B does not exist yet, create it and mark it
- Always set the log of visited sites to 1

The Monotonic Protocol, Rules2 (I)

Later contacts and responses:
$\left(\mathrm{LC}_{1}\right): \frac{\mathcal{T}_{\mathrm{r}}^{c}(a, i)=(b, j) \quad x \in \mathrm{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{\times}\right), B^{r, b}\left(j^{\times}\right) \rightarrow A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{\times, 1}\right)}$
$\left(\mathrm{LC}_{2}\right): \frac{\mathcal{T}_{\mathrm{r}}^{c}(a, i)=(b, j) \quad x \notin \mathrm{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{\tilde{y}}, 1}+i^{x}\right), B^{r, b}(j) \rightarrow(\nu x)\left(A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{y}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}\right)\right)}$
(R): $\frac{\mathcal{F}_{\mathrm{r}}(a, i)=(b, j)}{A^{r, a}\left(j^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\operatorname{ouT}_{b}^{\tilde{y}, 2}\right) \rightarrow A^{r, a}\left(i^{x, 2}\right), B^{r, b}\left(j^{x, 2}+\operatorname{ouT}_{b}^{\tilde{y}, 2}\right)}$

The Monotonic Protocol, Rules 2 (II): Interpretation

(Later contacts)

- All agents are now marked, we need to $\log 1$ on sites that were not visited using $\mathcal{T}_{\text {r }}$
- With $\left(\mathrm{LC}_{1,2}\right)$, use the complementary tree $\mathcal{T}_{\mathrm{r}}{ }^{c}$ to traverse the remaining sites
- $\left(\mathrm{LC}_{1}\right)$: use an already existing edge in \mathcal{R}
- $\left(\mathrm{LC}_{2}\right)$: create a new edge from A to B
(Responses)
- With (R), propagate the success signal (by setting the logs to 2) from the bottom of \mathcal{F}_{r} up to init
- Agents are only allowed to propagate the signal when they have received it from all children

The Monotonic Protocol, Rules 3 (I)

Completions:

$$
\begin{aligned}
& \text { (SHIFT): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A^{r, a}\left(\operatorname{OUT}_{a}^{\tilde{y}, 2}\right) \rightarrow A^{r, a}\left(\text { OUT }_{a}^{\tilde{y}, 3}\right)} \\
& \text { (I-PPG): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right) \quad \mathcal{F}_{\mathrm{r}}(a, i)=(b, j)}{A^{r, a}\left(i^{\times, 3}\right), B^{r, b}\left(j^{x, 2}\right) \rightarrow A^{r, a}\left(i^{*, 4}\right), B^{r, b}\left(j^{x, 3}\right)} \\
& \text { (PPG): } \frac{a \neq \operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right) \quad \mathcal{F}_{\mathrm{r}}(a, i)=(b, j)}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{\tilde{r}, 3}}+i^{x, 2}\right), B^{r, b}\left(j^{\times,, 2}\right) \rightarrow A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{\tilde{y}}, 3}+i^{x, 3}\right), B^{r, b}\left(j^{x, 3}\right)} \\
& \text { (I-EXIT): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A^{r, a}\left(\text { OUT }_{a}^{\tilde{x}, 4}\right) \rightarrow A\left(o_{a}^{\tilde{\tilde{x}}}\right)} \\
& \text { (EXIT): } \frac{a \neq \operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A^{r, a}\left(\operatorname{IN}_{a}^{\tilde{y}, 3}+\operatorname{ouT}_{a}^{\tilde{z}, 3}\right) \rightarrow A\left(v_{a}^{\tilde{y}}+o_{a}^{\tilde{z}}\right)}
\end{aligned}
$$

The Monotonic Protocol, Rules3 (II): Interpretation

(Completions)

- When the success signal reaches init, all its output have $\log 2$, agents are marked and reaction can't fail
- Now: propagate the completion signal down $(\log =3)$ and project the agents to κ proteins
- (SHIFT) initiates the completion phase on init
- (I-PPG) and (PPG) propagate the signal (resp. for init and for other agents)
- Agents may only propagate the signal when they have received it from all parents
- (I-EXIT) and (EXIT) project the agents back to κ proteins
- Agents may only project when they have propagated the signal to all children

Outline

(1) Introduction \& Motivation

(2) The k-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- mк Summary

4 Summary \& Conclusion

The Monotonic Protocol, Example (I): r_{ex}

Suppose the following monotonic κ reaction $\mathrm{r}_{\text {ex }}$:

$$
\begin{gathered}
A\left(1^{x}+2^{y}+3+4\right), B\left(1+2^{x}\right), C(1+2+\overline{3}), D\left(1+2^{y}+3+\overline{4}\right) \quad \rightarrow \\
(\nu z u)\left(A\left(1^{x}+2^{y}+3^{z}+\overline{4}\right), B\left(1+2^{x}\right), C\left(1^{z}+2^{u}+3\right), D\left(1+2^{y}+3^{u}+\overline{4}\right)\right)
\end{gathered}
$$

Example (II): Micro-scenario for r_{ex}, Defining $\mathcal{F}_{\mathrm{r}_{\mathrm{ex}}}$

Possible micro-scenario for $\mathrm{r}_{\text {ex }}$: $\left(\mathcal{F}_{\mathrm{r}_{\mathrm{ex}}}, \mathcal{T}_{\mathrm{r} \mathrm{ex}}\right.$, init $)$

- $\mathcal{F}_{\mathrm{r}_{e x}}$: acyclic orientation of the graph of the products of $\mathrm{r}_{e x}$

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{r}_{\text {ex }}}=\{(A, 1) \mapsto(B, 2),(A, 2) \mapsto(D, 2),(A, 3) \mapsto(C, 1),(C, 2) \mapsto(D, 3)\} \\
& \mathcal{F}_{\mathrm{r}_{\text {ex }}}^{*}=\{(B, 2) \mapsto(A, 1),(D, 2) \mapsto(A, 2),(C, 1) \mapsto(A, 3),(D, 3) \mapsto(C, 2)\}
\end{aligned}
$$

Example (III): Micro-scenario for r_{ex}, Def. $\mathcal{T}_{\mathrm{r}_{\mathrm{ex}}}$ and init

- $\mathcal{T}_{\text {rex }}$: tree spanning $\mathcal{F}_{\mathrm{r}_{\mathrm{ex}}}$

$$
\begin{aligned}
& \mathcal{T}_{\mathrm{r}_{\mathrm{ex}}}=\{(A, 1) \mapsto(B, 2),(A, 3) \mapsto(C, 1),(C, 2) \mapsto(D, 3)\} \\
& \mathcal{T}_{\mathrm{rex}}^{c}=\mathcal{F}_{\mathrm{r}_{\mathrm{ex}}} \backslash \mathcal{T}_{\mathrm{r}_{\mathrm{ex}}}=\{(A, 2) \mapsto(D, 2)\}
\end{aligned}
$$

- init $=$ common root of $\mathcal{F}_{\mathrm{r}_{\mathrm{ex}}}$ and $\mathcal{T}_{\mathrm{r}_{\mathrm{ex}}} \stackrel{\text { def }}{=} A$

Example (IV): Transitions 1

Start situation: this is a κ solution

Example (V): Transitions2

(INIT): $A(\underbrace{1^{x}+2^{y}+3+4}_{\sigma}) \rightarrow(\nu r)(A^{r, a}(\underbrace{1^{x}+2^{y}+3+\overline{4}}_{\sigma^{\prime}}))$
$\sigma \neq \sigma^{\prime}$, i.e., there were changes in free sites:
$(a, 4)$ has switched from v to h

Example (VI): Transitions3

$\begin{aligned}\left(\mathrm{FC}_{1}\right): & A^{r, a}(\overbrace{1^{x}}^{i^{x}}+2^{y}+3+4), B(\overbrace{1}^{\sigma}+\overbrace{2^{x}}^{j^{x}}) \\ & \rightarrow(\underbrace{1^{x, 1}}_{i^{x, 1}}+2^{y}+3+\overline{4}), B^{r, b}(\underbrace{1}_{\sigma^{\prime}}+\underbrace{2^{x, 1}}_{j^{x, 1}}))\end{aligned}$
$\operatorname{IN}_{a}^{\tilde{y}, 1}=\emptyset ; \sigma=\sigma^{\prime}$, i.e., no change in free sites (h to v or v to h)

Example (VII): Transitions 4

$\left(\mathrm{FC}_{2}\right): A^{r, a}(1^{x, 1}+2^{y}+\overbrace{3}^{i}+\overline{4}), C(\overbrace{1}^{j}+\overbrace{2+\overline{3}}^{\sigma})$
$\rightarrow(\nu z)(A^{r, a}(1^{x, 1}+2^{y}+\underbrace{3^{z, 1}}_{j^{2}, 1}+\overline{4}), C^{r, c}(\underbrace{1^{z, 1}}_{j^{z, 1}}+\underbrace{2+3}_{\sigma^{\prime}}))$
$\sigma \neq \sigma^{\prime}:(c, 4)$ has switched from h to v

Let's Understand the Monotonic Protocol

Example (VIII): Transitions5

$\begin{aligned}\left(\mathrm{FC}_{2}\right): & C^{r, c} \overbrace{1^{z, 1}}^{\mathrm{IN}, \mathrm{N}^{\bar{y}, 1}}+\overbrace{2}^{i}+3), D(\overbrace{1+2^{y}+\overline{4}}^{\sigma}+3) \\ & \rightarrow(\nu u)(C^{r, c}(\underbrace{1^{z, 1}}_{\mathrm{NN}, \bar{y}_{c}^{z, 1}}+\underbrace{2^{u, 1}}_{i^{u, 1}}+3), D^{r, d}(\underbrace{1+2^{y}+\overline{4}}_{\sigma^{\prime}}+3^{u, 1})) \\ & \sigma=\sigma^{\prime}\end{aligned}$

Let's Understand the Monotonic Protocol

Example (IX): Transitions6

$\begin{aligned}\left(\mathrm{LC}_{1}\right): & A^{r, a}(1^{x, 1}+\overbrace{2^{y}}^{i y}+3^{z, 1}+\overline{4}), D^{r, d}(1+\overbrace{2^{y}}^{j y}+3^{u, 1}+\overline{4}) \\ & \rightarrow A^{r, a}(1^{x, 1}+\underbrace{2^{y, 1}}_{i y, 1}+3^{z, 1}+\overline{4}), D^{r, d}(1+\underbrace{2^{y, 1}}_{j^{y, 1}}+3^{u, 1}+\overline{4}) \\ & \operatorname{IN}_{a}^{\tilde{y}, 1}=\emptyset\end{aligned}$

Let's Understand the Monotonic Protocol

Example (X): Transitions7

(R): $C^{r, c}\left(1^{z, 1}+2^{u, 1}+3\right), D\left(1+2^{y, 1}+3^{u, 1}+\overline{4}\right)$
$\rightarrow C^{r, c}(1^{z, 1}+\underbrace{2^{u, 2}}_{i^{u, 2}}+3), D(1+2^{y, 1}+\underbrace{3^{u, 2}}_{j^{u, 2}}+\overline{4})$
$\operatorname{ouT}_{d}^{\tilde{y}, 2}=\emptyset$

The $m \kappa$-Calculus

Let's Understand the Monotonic Protocol

Example (XI): Transitions8

(R): $A^{r, a}(1^{x, 1}+\overbrace{2^{y, 1}}+3^{z, 1}+\overline{4}), D(1+\overbrace{2^{y, 1}}+3^{u, 2}+\overline{4})$ $\rightarrow A^{r, a}(1^{x, 1}+\underbrace{2^{y, 2}}_{i^{y, 2}}+3^{z, 1}+\overline{4}), D(1+\underbrace{2^{y, 2}}_{j^{y, 2}}+3^{u, 2}+\overline{4})$ $\operatorname{ouT}_{d}^{\tilde{y}, 2}=\emptyset$

The $m \kappa$-Calculus

Let's Understand the Monotonic Protocol

Example (XII): Transitions9

$$
\begin{aligned}
(\mathrm{R}): & A^{r, a}(\overbrace{1^{x, 1}}^{i^{x, 1}}+2^{y, 2}+3^{z, 1}+\overline{4}), B(1+\overbrace{2^{x, 1}}^{j^{x, 1}}) \\
& \rightarrow A^{r, a}(\underbrace{1^{x, 2}}_{i^{x, 2}}+2^{y, 2}+3^{z, 1}+\overline{4}), B(1+\underbrace{2^{x, 2}}_{j^{x, 2}}) \\
& \operatorname{OUT}_{b}^{\tilde{y}, 2}=\emptyset
\end{aligned}
$$

The $m \kappa$-Calculus

Let's Understand the Monotonic Protocol

Example (XIII): Transitions 10

$\begin{aligned}(\mathrm{R}): & A^{r, a}(1^{x, 2}+2^{y, 2}+\overbrace{3^{z, 1}}^{i^{z, 1}}+\overline{4}), C^{r, c}(\overbrace{1^{z, 1}}^{j^{z, 1}}+\overbrace{2^{u, 2}}^{\text {OUT }_{c}^{\tilde{y}, 2}}+3) \\ & \rightarrow A^{r, a}(1^{x, 2}+2^{y, 2}+\underbrace{3^{z, 2}}_{i^{z, 2}}+\overline{4}), C^{r, c}(\underbrace{1^{z, 2}}_{j^{z, 2}}+\underbrace{2^{u, 2}}_{\text {OUT }_{c}^{\tilde{y}, 2}}+3)\end{aligned}$
(For the rest of the example, we will use only partial interfaces)

Example (XIV): Transitions ${ }_{11}$

(SHIFT): $A^{r, a}(\underbrace{1^{x, 2}+2^{y, 2}+3^{z, 2}}_{\text {out }_{a}^{\tilde{y}, 2}}) \rightarrow A^{r, a}(\underbrace{1^{x, 3}+2^{y, 3}+3^{z, 3}}_{\text {out }_{a}^{\tilde{y}, 3}})$

The $m \kappa$-Calculus

Let's Understand the Monotonic Protocol

Example (XV): Transitions ${ }_{12}$

$(\mathrm{I}-\mathrm{PPG}): A^{r, a}\left(1^{x, 3}\right), B\left(2^{x, 2}\right) \rightarrow A^{r, a}\left(1^{x, 4}\right), B\left(2^{x, 3}\right)$
(I-PPG): $A^{r, a}\left(2^{y, 3}\right), D\left(2^{y, 2}\right) \rightarrow A^{r, a}\left(2^{y, 4}\right), D\left(2^{y, 3}\right) \quad$ each with $a=$ init
$(\mathrm{I}-\mathrm{PPG}): A^{r, a}\left(3^{z, 3}\right), C\left(1^{z, 2}\right) \rightarrow A^{r, a}\left(3^{z, 4}\right), C\left(1^{z, 3}\right)$

Example (XVI): Transitions ${ }_{13}$

$$
\begin{aligned}
&(\mathrm{PPG}): C^{r, c}(\underbrace{}_{\substack{\tilde{\tilde{y}}, 3 \\
1_{c}^{z, 3}}}+\underbrace{2^{u, 2}}_{i u, 2}), D^{r, d}\left(3^{u, 2}\right) \rightarrow C^{r, c}(\underbrace{1^{z, 3}}_{\mathrm{IN}_{c}^{\tilde{y}, 3}}+\underbrace{2^{u, 3}}_{i u, 3}), D^{r, d}\left(3^{u, 3}\right) \\
& \quad c \neq \text { init }
\end{aligned}
$$

Example (XVII): Transitions 14

$$
\begin{gathered}
(\mathrm{I}-\mathrm{EXIT}): A^{r, a}(\underbrace{1^{x, 4}+2^{y, 4}+3^{z, 4}}_{\text {out }_{a}^{\tilde{y}, 4}}) \rightarrow A\left(1^{x}+2^{y}+3^{z}\right) \\
a=\text { init }
\end{gathered}
$$

Example (XVIII): Transitions ${ }_{15}$

(EXIT): $B^{r, b}\left(2^{x, 3}\right) \rightarrow B\left(2^{x}\right)$
(EXIT): $C^{r, c}\left(1^{z, 3}+2^{u, 3}\right) \rightarrow C\left(1^{z}+2^{u}\right)$
(EXIT): $D^{r, d}\left(2^{y, 3}+3^{u, 3}\right) \rightarrow D\left(2^{y}+3^{u}\right)$
$b, c, d \neq$ init; restriction on r is dropped with structural congruence

Outline

(1) Introduction \& Motivation
(2) The r-Calculus

- Syntax
- More Definitions \& Properties
- Reactions \& Transition Systems
- κ Summary
(3) The $m \kappa$-Calculus
- From κ to $m \kappa$, New Notations \& Definitions
- Implementation of κ : The Monotonic Protocol
- Let's Understand the Monotonic Protocol
- $m \kappa$ Summary

4 Summary \& Conclusion

$m \kappa$-Calculus: Summary

- Extended sites, extended interfaces are used in $m \kappa$
\Rightarrow Add additional state information to agents.
$\Rightarrow \kappa$ solutions are a special case of $m \kappa$
- Micro-scenario ($\mathcal{F}_{\mathrm{r}}, \mathcal{T}_{\mathrm{r}}$, init) are used to implement a κ reaction in $m \kappa$. Two series of interaction:
(1) Recruitment: find \& mark needed agents
(2) Completion: with success signal, project back to κ
\Rightarrow The monotonic protocol

From $m \kappa$-Calculus to π-Calculus

- With its binary interaction, $m \kappa$ can be implemented in π
- Basic ideas:
- Each agent becomes a process
- Communication is asymmetric in π : decide which processes are senders and which ones are receivers
- Processes are parametrized by the agents' interfaces
- Sender sends its interface, receiver checks compatibility:
- $\mathrm{OK} \Rightarrow$ Makes necessary changes and sends back updated interface on success channel
- not $\mathrm{OK} \Rightarrow$ Tells sender to abort interaction on failure channel
- Conditions are expressed with π^{\prime} s matches: $\left[u=u^{\prime}\right] P ; Q$
- See original paper for more info:

Danos \& Laneve, Formal Molecular Biology
http://www.cs.unibo.it/~laneve/papers/fmb.pdf

Formal Molecular Biology: Summary

- Biological modeling problem
- Protein interactions: concurrent, asynchronous
- Define new process algebra to model protein interactions and biological reactions
- κ-Calculus
- Idealized protein calculus
- Easily visualizable
- Allows two kinds of atomic reactions: monotonic and antimonotonic
- $\quad \boldsymbol{\kappa}$-Calculus
- Finer-grained language, extended syntax
- Allows only binary interactions
- κ reactions are implementable in $m \kappa$
- $m \kappa$-calculus can be implemented in π-calculus

