Formal Molecular Biology

Presentation by Jérôme Caffaro \& Jean-Philippe Pellet

Reference

Vincent Danos \& Cosimo Laneve,
Formal Molecular Biology
http://www.cs.unibo.it/~laneve/papers/fmb.pdf

1 A visual notation for κ-calculus

Definitions A site is a point of connection on a protein that can be linked
to another protein.
Depending on how the protein is folded in space, a site can be active or not

- A site may be bound or free.
- A free site can be visible or hidden.

Proteins can be assembled (connected) into complexes.
Definitions Collections of proteins and complexes are called solutions. Solutions evolve by mean of reactions, which occurs when a sub-solution has a special shape, called a reactant.

2κ-calculus

Definitions The syntax of κ-calculus relies on

- a countable set of protein names \mathcal{P}, ranged over by A, B, C, \ldots
- a countable set of edge names \mathcal{E}, ranged over by x, y, z, \ldots
- a signature map, written \mathfrak{s}, from \mathcal{P} to natural number \mathbb{N}.

For each protein, $\mathfrak{s}(A)$ is the number of sites of A and the pair (A, i) is a site of A.

Definition (Interface) An interface is a partial map from \mathbb{N} to $\mathcal{E} \cup\{\mathrm{h}, \mathrm{v}\}$ ranged over by ρ, σ,
A site (A, i) is said to be:

- visible if $\rho(i)=v$
- hidden if $\rho(i)=h$
- bound if $\rho(i) \in \mathcal{E}$

Interfaces are used to depict partial states of $A^{\prime} \mathrm{s}$ sites.
Syntax The syntax is given by:

$\mathcal{S}:=$| | |
| :---: | :--- |
| | solution |
| | empty solution |
| | $\mathcal{S}, \mathcal{S})$ |
| | protein |
| | group |
| | $(\nu x)(\mathcal{S})$ | new \quad new

- The "new" operator is a binder: in $(\nu x)(\mathcal{S}), \mathcal{S}$ is the scope of the binde (νx)
- We inductively define the set $\operatorname{fn}(\mathcal{S})$ of free names in a solution \mathcal{S} :

$$
\begin{aligned}
\mathrm{fn}(0) & =\emptyset \\
\mathrm{ff}(A(\rho)) & =\mathrm{fn}(\mathcal{\rho}) \\
\mathrm{ff}\left(\mathcal{S} \mathcal{S}^{\prime}\right) & =\mathrm{fn}(\mathcal{S}) \cup \mathrm{fn}\left(\mathcal{S}^{\prime}\right. \\
\mathrm{fn}((\nu x)(\mathcal{S})) & =\mathrm{fn}(\mathcal{S}) \backslash\{x\}
\end{aligned}
$$

- An occurrence of x in \mathcal{S} is bound if it occurs in a sub-solution which is in the scope of the binder x.
- A solution \mathcal{S} is closed if all occurrences of names in \mathcal{S} are bound (\approx if $\mathrm{fn}(S)=\emptyset$).

Abbreviation: $\left(\nu x_{1}, \ldots, x_{n}\right)(\mathcal{S})$ or $(\nu \tilde{x})(S)$ instead of $\left(\nu x_{1}\right) \ldots\left(\nu x_{n}\right)(\mathcal{S})$
Definition (Structural Congruence) Structural congruence, written \equiv, is the least equivalence closed under syntactic conditions, containing α-equivalence (injective renaming of bound variables), taking "," to be associative (as the choice of symbols suggests) and commutative, with 0 as neutral element and satisfying the scope laws:

$$
\begin{array}{rlll}
(\nu x)(\nu y)(\mathcal{S}) & \equiv(\nu y)(\nu x)(\mathcal{S}) & & \\
(\nu x)(\mathcal{S}) & \equiv \mathcal{S} & \text { when } x \notin \mathrm{fn}(\mathcal{S}) \\
(\nu x)(\mathcal{S}), \mathcal{S}^{\prime} & \equiv(\nu x)\left(\mathcal{S}, \mathcal{S}^{\prime}\right) & \text { when } x \notin \mathrm{fn}\left(\mathcal{S}^{\prime}\right)
\end{array}
$$

Using structural congruence, we can define connectedness:

- $\mathcal{A}(\rho)$ is connected;
- if \mathcal{S} is connected so is $(x)(\mathcal{S})$
- if \mathcal{S} and \mathcal{S}^{\prime} are connected and $\operatorname{fn}(\mathcal{S}) \cap \mathrm{fn}\left(\mathcal{S}^{\prime}\right) \neq \emptyset$ then $\mathcal{S}, \mathcal{S}^{\prime}$ is connected;
- if \mathcal{S} is connected and $\mathcal{S} \equiv \mathcal{T}$ then \mathcal{T} is connected.

Definition (Graph-likeness) A solution is said to be graph-like iff

- free names occur at most twice in \mathcal{S};
- binders in \mathcal{S} bind either zero or two occurrences.

If in addition free names occurs exactly twice in \mathcal{S}, we say that \mathcal{S} is strongly graph-like.

Definition (Graph with sites) Let $\llbracket \cdot \|_{g}$ be the following function from graph-like solutions to graphs with sites:

- $\llbracket A(\rho) \rrbracket_{g}$ is the graph with a single node labeled A, sites in $\{1, \ldots, \mathfrak{s}(A)\}$, bound sites k being labeled by $\rho(k)$, and free sites being in the state prescribed by ρ
- $\llbracket \mathcal{S}, \mathcal{S}^{\prime} \rrbracket_{g}$ is the union graph of $\llbracket \mathcal{S} \rrbracket_{g}$ and $\llbracket \mathcal{S}^{\prime} \rrbracket_{g}$, with sites labeled with the same name being connected by an edge, and their common name erased
- $\llbracket(\nu x)(\mathcal{S}) \rrbracket_{g}$ is $\llbracket \mathcal{S} \rrbracket_{g}$

Definition (Growth relation \leq) The growth relation \leq is the least binary relation over interfaces precisely generated by the following rules:

$$
\begin{gathered}
\text { (CREATE): } \frac{x \in \tilde{x}}{\tilde{x} \vdash \imath \leq \imath^{x}} \\
\text { (HV-SWITCH): } \frac{\overline{\tilde{x} \vdash \bar{\imath} \leq \imath}}{\text { (VH-SWITCH): } \frac{\tilde{x} \vdash \imath \leq \bar{\imath}}{(\text { REFLEX }): ~} \frac{\tilde{x} \cap \mathrm{fn}(\rho)=\emptyset}{\tilde{x} \vdash \rho \leq \rho}} \\
\text { (SUM): } \frac{\tilde{x} \vdash \rho \leq \rho^{\prime} \tilde{x} \vdash \sigma \leq \sigma^{\prime}}{\tilde{x} \vdash \rho+\sigma \leq \rho^{\prime}+\sigma^{\prime}}
\end{gathered}
$$

Definition (Growth relation \leq for pre-solutions) The growth relation \leq is extended to the pre-solutions as the least binary relation precisely generated by the following rules:

$$
\text { (NIL): } \overline{\tilde{x} \vdash 0 \leq 0}
$$

$$
\begin{array}{ll}
\text { (GROUP): } & \frac{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}}{\tilde{x} \vdash \rho \leq \mathcal{S}, A(\rho) \leq \mathcal{S}^{\prime}, A\left(\rho^{\prime}\right) \subseteq \mathfrak{s}(A)} \\
(\text { (SYNTH): } & \frac{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime} \quad \operatorname{fn}(\rho) \subseteq \tilde{x} \quad \operatorname{dom}(\rho)=\mathfrak{s}(A)}{\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}, A(\rho)}
\end{array}
$$

Definition (Monotonic reaction) Let $\mathcal{S}, \mathcal{S}^{\prime}$ be two pre-solutions. The reaction $\mathrm{r}_{1}: \mathcal{S} \rightarrow(\nu \tilde{x}) \mathcal{S}^{\prime}$ is called monotonic iff

- $\tilde{x} \vdash \mathcal{S} \leq \mathcal{S}^{\prime}$
- \mathcal{S} and $(\nu \tilde{x}) \mathcal{S}^{\prime}$ are graph-like
- \mathcal{S}^{\prime} is connected

Lemma $\quad \operatorname{fn}(\mathcal{S})=\operatorname{fn}\left((\nu \tilde{s}) \mathcal{S}^{\prime}\right)$
Definition (Antimonotonic reaction) Let $\mathcal{S}, \mathcal{S}^{\prime}$ be two pre-solutions. The reaction $\mathrm{r}_{2}:(\nu \tilde{x}) \mathcal{S} \rightarrow \mathcal{S}^{\prime}$ is called antimonotonic iff its dual $\mathcal{S}^{\prime} \rightarrow(\nu \tilde{x}) \mathcal{S}$ is monotonic

Lemma $\quad \operatorname{fn}((\nu \tilde{x}) \mathcal{S})=\operatorname{fn}\left(\mathcal{S}^{\prime}\right.$
Definition (Renaming) A renaming r is a partial finite injection on $\mathcal{E} \cup$ $\{h, v\}$, which is the identity on $\{h, v\}$ and maps \mathcal{E} onto \mathcal{E}.
Definition (Matching solutions (monotonic)) Let $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$ be a mono tonic reaction, and \mathcal{S}, \mathcal{T} be two solutions.

$$
\mathcal{S}, \mathcal{T} \text { match } \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}
$$

$\Leftrightarrow \mathcal{S}, \mathcal{T} \models \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$
$\Leftrightarrow \exists$ renaming r, \exists partial interfaces ξ_{1}, \cdots, ξ_{m} such that:

1. $\forall i: r(\tilde{x}) \cap \mathrm{fn}\left(\xi_{i}\right)=\emptyset$
2. $\mathcal{S}=A_{1}\left(r \circ \rho_{1} \cup \xi_{1}\right), \cdots, A_{n}\left(r \circ \rho_{n} \cup \xi_{n}\right)$
and $\mathcal{T}=(r(\tilde{x}))\left(A_{1}\left(r \circ \sigma_{1} \cup \xi_{1}\right), \cdots, A_{m}\left(r \circ \sigma_{m} \cup \xi_{m}\right)\right)$
Definition (Matching solutions (antimonotonic)) Let $(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P}$ be a monotonic reaction, and \mathcal{S}, \mathcal{T} be two solutions.

$$
\begin{aligned}
& \mathcal{S}, \mathcal{T} \text { match }(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P} \\
\Leftrightarrow & \mathcal{S}, \mathcal{T} \models(\nu \tilde{x}) \mathcal{R} \rightarrow \mathcal{P} \\
\Leftrightarrow & \mathcal{T}, \mathcal{S} \models \mathcal{P} \rightarrow(\nu \tilde{x}) \mathcal{R}
\end{aligned}
$$

Definition (Transition relation \rightarrow_{R}) Given a set of biological reactions R and a set of solutions, the transition relation \rightarrow_{R} is the least binary relation over solutions precisely generated by the following rules:

$$
\begin{gathered}
(\mathrm{MON}): \frac{\mathcal{S}, \mathcal{T} \models \mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P} \in \mathrm{R}}{\mathcal{S} \rightarrow \mathrm{R}} \\
\text { (ANTIMON): } \frac{\mathcal{S}, \mathcal{T} \models(\nu \tilde{x} \mathcal{R} \rightarrow \mathcal{P} \in \mathrm{R}}{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}}
\end{gathered}
$$

$$
\begin{gathered}
\text { (NEW): } \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}}{(\nu x) \mathcal{S} \rightarrow_{\mathrm{R}}(\nu x) \mathcal{T}} \\
\text { (GROUP): } \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T}}{\mathcal{S}, \mathcal{U} \rightarrow_{\mathrm{R}} \mathcal{T}, \mathcal{U}} \\
\text { (STRUCT): } \frac{\mathcal{S} \rightarrow_{\mathrm{R}} \mathcal{T} \mathcal{S} \equiv \mathcal{S}^{\prime} \mathcal{T} \equiv \mathcal{T}^{\prime}}{\mathcal{S}^{\prime} \rightarrow_{\mathrm{R}} \mathcal{T}^{\prime}}
\end{gathered}
$$

$3 \quad m \kappa$-calculus

Definition (Extended interface) An extended interface θ is a map from \mathbb{N} to $(\mathcal{E} \cup \mathcal{G} \cup\{h, v\}) \times \mathbb{N}$.

Definition (Projection of extended interfaces) An extended interface θ from $m \kappa$ can be projected to standard interface $[\theta]^{-}$from κ with the following map:

- $\left[\imath^{x, n}\right]^{-}=\imath^{x}$
- $\left[\imath^{r, n}\right]^{-}=\left[\imath^{v, n}\right]^{-}=\left[\imath^{n}\right]^{-}=\imath^{v}=\imath$
- $\left[\imath^{h, n}\right]^{-}=\left[\imath^{n}\right]^{-}=\imath^{h}=\bar{\imath}$

Projection is thus extended to interfaces, agents and solutions.
Definition ((Anti)monotonic interaction) With \mathcal{R}, \mathcal{P} two pre-solutions, $\mathcal{R} \rightarrow \mathcal{P}$ is a monotonic (resp. an antimonotonic) interaction iff:

1. \mathcal{R} and \mathcal{P} consist of at most two agents
2. $\mathrm{fn}(\mathcal{R}) \supseteq \mathrm{fn}(\mathcal{P})$
3. $\operatorname{bn}(\mathcal{R}) \cap \mathcal{G}=\emptyset$
4. its projection $[\mathcal{R}]^{-} \rightarrow[\mathcal{P}]^{-}$is monotonic (resp. antimonotonic) in κ

Definition (Micro-scenario) A micro-scenario for a monotonic reaction r $\mathcal{R} \rightarrow(\nu \tilde{x}) \mathcal{P}$ is a tuple ($\mathcal{F}_{\mathrm{r}}, \mathcal{T}_{\mathrm{r}}$, init), where:

- \mathcal{F}_{r} is a directed acyclic version of $\llbracket \mathcal{P} \rrbracket_{g}$
(the graph of the products)
- \mathcal{T}_{r} is a tree spanning the flow graph \mathcal{F}_{r}
- init is the common root of both \mathcal{F}_{r} and \mathcal{T}_{r}

Definition (Signal Ordering Relation \succ) The signal ordering relation \succ is the least transitive relation over extended sites such that:

$$
\mathcal{F}_{\mathbf{r}}(a, i)=(b, j) \quad \Rightarrow \quad(a, i) \succ(b, j)
$$

$$
\mathcal{F}_{\mathbf{r}}^{*}(a, i) \neq \perp \wedge \mathcal{F}_{\mathbf{r}}(a, j) \neq \perp \Rightarrow(a, i) \succ(a, j)
$$

Notation (IN and out interfaces) With $\tilde{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$:

$$
\begin{aligned}
& \mathrm{IN}_{a}^{\tilde{x}, n} \stackrel{\text { def }}{=} \bigcup_{\left\{i \mid \mathcal{F}_{\tilde{*}(a, i) \neq \perp\}}\right.} i^{x_{i}, n} \\
& \mathbf{O U T}_{a}^{\tilde{\tilde{n}}, n} \stackrel{\text { def }}{=} \bigcup_{\left\{i \mid \mathcal{F}_{\mathfrak{F}}(a, i) \neq \perp\right\}} i^{x_{i}, n}
\end{aligned}
$$

Definition (The Monotonic Protocol) Given a monotonic reaction $\mathcal{R} \rightarrow$ $(\nu \tilde{x})(\mathcal{P})$, the corresponding transitions in $m \kappa$ are precisely generated by the following rules:

Initiation and first contacts:
(INIT): $\frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A(\sigma) \rightarrow(\nu r)\left(A^{r, a}\left(\sigma^{\prime}\right)\right)}$
$\left(\mathrm{FC}_{1}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \in \mathrm{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 1}+i^{x}\right), B\left(j^{x}+\sigma\right) \rightarrow A^{r, a}\left(\mathrm{IN}_{a}^{j, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma^{\prime}\right)}$
$\left(\mathrm{FC}_{2}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \notin \mathrm{fn}(\mathrm{r}) \quad b \in \mathcal{R}}{A^{r, a}\left(\mathrm{IN}^{\tilde{j}, 1}+i\right), B(j+\sigma) \rightarrow(\nu x)\left(A^{r, a,}\left(\mathrm{IN}^{j, 1}, i^{x, 1}\right)\right.}$

$$
A \quad\left(\mathbb{N}_{a}^{g, 1}+i\right), B(j+\sigma) \rightarrow(\nu x)\left(A^{r, a}\left(\mathbb{N}_{a}^{j, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma^{\prime}\right)\right)
$$

$$
\left(\mathrm{FC}_{3}\right): \frac{\mathcal{T}_{\mathrm{r}}(a, i)=(b, j) \quad x \notin \mathrm{fn}(\mathrm{r}) \quad b \notin \mathcal{R}}{A^{r, a}\left(\mathrm{IN}_{a}^{j, 1}+i\right) \rightarrow(\nu x)\left(A^{r, a}\left(\mathrm{IN}_{a}^{j, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\sigma\right)\right)}
$$

Later contacts and responses

$$
\begin{gathered}
\left(\mathrm{LC}_{1}\right): \frac{\mathcal{T}_{c}^{c}(a, i)=(b, j) x \in \operatorname{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 1}+i^{x}\right), B^{r, b}\left(j^{x}\right) \rightarrow A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}\right)} \\
\left(\mathrm{LC}_{2}\right): \frac{\mathcal{T}_{c}^{c}(a, i)=(b, j) x \notin \neq \mathrm{fn}(\mathrm{r})}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 1}+i^{x}\right), B^{r, b}(j) \rightarrow(\nu x)\left(A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 1}+i^{x, 1}\right), B^{r, b}\left(j^{x, 1}\right)\right)} \\
(\mathrm{R}): \frac{\mathcal{F}_{\mathbf{r}}(a, i)=(b, j)}{A^{r, a}\left(i^{x, 1}\right), B^{r, b}\left(j^{x, 1}+\mathrm{OUT}_{b}^{j, 2}\right) \rightarrow A^{r, a}\left(i^{r, 2}\right), B^{r, b}\left(j^{x, 2}+\mathrm{OUT}_{b}^{\tilde{j}, 2}\right)}
\end{gathered}
$$

Completions:

$$
\begin{aligned}
& \text { (SHIFT): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right)}{A^{r, a}\left(\mathrm{OUT}_{a^{j}, 2}^{j, 2}\right) \rightarrow A^{r, a}\left(\mathrm{OUT}_{a}^{\bar{j}, 3}\right)} \\
& \text { (I-PPG): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathrm{r}}\right) \quad \mathcal{F}_{\mathrm{r}}(a, i)=(b, j)}{A^{r, a}\left(i^{x, 3}\right), B^{r, b}\left(j^{x, 2}\right) \rightarrow A^{r, a}\left(i^{i, 4}\right), B^{r, b}\left(j^{x, 3}\right)} \\
& \text { (PPG): } \frac{a \neq \operatorname{init}\left(\mathcal{F}_{r}\right) \mathcal{F}_{\mathrm{r}}(a, i)=(b, j)}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 3}+i^{x, 2}\right), B^{r, b}\left(j^{x, 2}\right) \rightarrow A^{r, a}\left(\mathrm{~N}_{a}^{\bar{j}, 3}+i^{x, 3}\right), B^{r, b}\left(j^{x, 3}\right)} \\
& \text { (I-EXIT): } \frac{a=\operatorname{init}\left(\mathcal{F}_{\mathfrak{r}}\right)}{A^{r, a}\left(\text { OUT }_{a}^{\bar{\delta}, 4}\right) \rightarrow A\left(o_{a}^{\tilde{\delta}}\right)} \\
& \text { (EXIT): } \frac{a \neq \operatorname{init}\left(\mathcal{\mathcal { F } _ { \mathrm { r } }}\right)}{A^{r, a}\left(\mathrm{IN}_{a}^{\tilde{j}, 3}+\mathrm{OU}_{a}^{\tau^{, 3}}\right) \rightarrow A\left(z_{a}^{\tilde{j}}+o_{a}^{\bar{z}}\right)}
\end{aligned}
$$

