
Concurrency Semantics
spring 2005

What this course is about

concurrency
! - “things” running in parallel, or on distributed locations
" - synchronization through communication
" - mobility (of code and computation, not of devices)

theory
" - a calculus of static concurrent systems: CCS
" - a calculus of dynamic concurrent systems: Pi
" - formal syntax & operational/behavioral semantics
" - formal analysis and proof techniques
" - equivalences & congruences

Why concurrency matters (I)

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

1 of 10 2005-03-16 00:37

Forum on Risks to the Public in Computers and Related
Systems

ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator

Volume 19: Issue 49

Tuesday 9 December 1997

Contents

 What really happened on Mars Rover Pathfinder
Mike Jones

 Potential software nightmare for International Space Station
Philip N. Gross

 Mail from Microsoft Network Rejected by America Online
Edupage

 Beware of HTML Mail
Tom Brazil
Navindra Umanee

 Microsoft, CNET, BUGTRAQ and the 'land' attack
Geoffrey King

 The ATM Debit Card Switcheroo
Lauren Weinstein

 Reminder on Privacy Digests
PGN

 Info on RISKS (comp.risks)

 What really happened on Mars Rover Pathfinder

Mike Jones <mbj@MICROSOFT.com>
Sunday, December 07, 1997 6:47 PM

The Mars Pathfinder mission was widely proclaimed as "flawless" in the early

days after its July 4th, 1997 landing on the Martian surface. Successes

included its unconventional "landing" -- bouncing onto the Martian surface

surrounded by airbags, deploying the Sojourner rover, and gathering and

transmitting voluminous data back to Earth, including the panoramic pictures

that were such a hit on the Web. But a few days into the mission, not long

after Pathfinder started gathering meteorological data, the spacecraft began

experiencing total system resets, each resulting in losses of data. The

press reported these failures in terms such as "software glitches" and "the

computer was trying to do too many things at once".

This week at the IEEE Real-Time Systems Symposium I heard a fascinating

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

2 of 10 2005-03-16 00:37

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel

that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the

Pathfinder spacecraft were executed as threads with priorities that were

assigned in the usual manner reflecting the relative urgency of these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different components

of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority

thread, and used the information bus to publish its data. When publishing

its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

while this mutex was held, and if the information bus thread then attempted

to acquire this same mutex in order to retrieve published data, this would

cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained

a communications task that ran with medium priority.

Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)

communications task to be scheduled during the short interval while the

(high priority) information bus thread was blocked waiting for the (low

priority) meteorological data thread. In this case, the long-running

communications task, having higher priority than the meteorological task,

would prevent it from running, consequently preventing the blocked

information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for

some time, conclude that something had gone drastically wrong, and initiate

a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL engineers

spent hours and hours running the system on the exact spacecraft replica in

their lab with tracing turned on, attempting to replicate the precise

conditions under which they believed that the reset occurred. Early in the

morning, after all but one engineer had gone home, the engineer finally

reproduced a system reset on the replica. Analysis of the trace revealed

the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had it

been on, the low-priority meteorological thread would have inherited the

priority of the high-priority data bus thread blocked on it while it held

the mutex, causing it be scheduled with higher priority than the

medium-priority communications task, thus preventing the priority inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

2 of 10 2005-03-16 00:37

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel

that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the

Pathfinder spacecraft were executed as threads with priorities that were

assigned in the usual manner reflecting the relative urgency of these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different components

of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority

thread, and used the information bus to publish its data. When publishing

its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

while this mutex was held, and if the information bus thread then attempted

to acquire this same mutex in order to retrieve published data, this would

cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained

a communications task that ran with medium priority.

Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)

communications task to be scheduled during the short interval while the

(high priority) information bus thread was blocked waiting for the (low

priority) meteorological data thread. In this case, the long-running

communications task, having higher priority than the meteorological task,

would prevent it from running, consequently preventing the blocked

information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for

some time, conclude that something had gone drastically wrong, and initiate

a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL engineers

spent hours and hours running the system on the exact spacecraft replica in

their lab with tracing turned on, attempting to replicate the precise

conditions under which they believed that the reset occurred. Early in the

morning, after all but one engineer had gone home, the engineer finally

reproduced a system reset on the replica. Analysis of the trace revealed

the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had it

been on, the low-priority meteorological thread would have inherited the

priority of the high-priority data bus thread blocked on it while it held

the mutex, causing it be scheduled with higher priority than the

medium-priority communications task, thus preventing the priority inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

2 of 10 2005-03-16 00:37

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel

that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the

Pathfinder spacecraft were executed as threads with priorities that were

assigned in the usual manner reflecting the relative urgency of these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different components

of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority

thread, and used the information bus to publish its data. When publishing

its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

while this mutex was held, and if the information bus thread then attempted

to acquire this same mutex in order to retrieve published data, this would

cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained

a communications task that ran with medium priority.

Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)

communications task to be scheduled during the short interval while the

(high priority) information bus thread was blocked waiting for the (low

priority) meteorological data thread. In this case, the long-running

communications task, having higher priority than the meteorological task,

would prevent it from running, consequently preventing the blocked

information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for

some time, conclude that something had gone drastically wrong, and initiate

a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL engineers

spent hours and hours running the system on the exact spacecraft replica in

their lab with tracing turned on, attempting to replicate the precise

conditions under which they believed that the reset occurred. Early in the

morning, after all but one engineer had gone home, the engineer finally

reproduced a system reset on the replica. Analysis of the trace revealed

the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had it

been on, the low-priority meteorological thread would have inherited the

priority of the high-priority data bus thread blocked on it while it held

the mutex, causing it be scheduled with higher priority than the

medium-priority communications task, thus preventing the priority inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

2 of 10 2005-03-16 00:37

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel

that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the

Pathfinder spacecraft were executed as threads with priorities that were

assigned in the usual manner reflecting the relative urgency of these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different components

of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority

thread, and used the information bus to publish its data. When publishing

its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

while this mutex was held, and if the information bus thread then attempted

to acquire this same mutex in order to retrieve published data, this would

cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained

a communications task that ran with medium priority.

Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)

communications task to be scheduled during the short interval while the

(high priority) information bus thread was blocked waiting for the (low

priority) meteorological data thread. In this case, the long-running

communications task, having higher priority than the meteorological task,

would prevent it from running, consequently preventing the blocked

information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for

some time, conclude that something had gone drastically wrong, and initiate

a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL engineers

spent hours and hours running the system on the exact spacecraft replica in

their lab with tracing turned on, attempting to replicate the precise

conditions under which they believed that the reset occurred. Early in the

morning, after all but one engineer had gone home, the engineer finally

reproduced a system reset on the replica. Analysis of the trace revealed

the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had it

been on, the low-priority meteorological thread would have inherited the

priority of the high-priority data bus thread blocked on it while it held

the mutex, causing it be scheduled with higher priority than the

medium-priority communications task, thus preventing the priority inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

The Risks Digest Volume 19: Issue 49 http://catless.ncl.ac.uk/Risks/19.49.html

2 of 10 2005-03-16 00:37

keynote address by David Wilner, Chief Technical Officer of Wind River

Systems. Wind River makes VxWorks, the real-time embedded systems kernel

that was used in the Mars Pathfinder mission. In his talk, he explained in

detail the actual software problems that caused the total system resets of

the Pathfinder spacecraft, how they were diagnosed, and how they were

solved. I wanted to share his story with each of you.

VxWorks provides preemptive priority scheduling of threads. Tasks on the

Pathfinder spacecraft were executed as threads with priorities that were

assigned in the usual manner reflecting the relative urgency of these tasks.

Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different components

of the spacecraft. A bus management task ran frequently with high priority

to move certain kinds of data in and out of the information bus. Access to

the bus was synchronized with mutual exclusion locks (mutexes).

The meteorological data gathering task ran as an infrequent, low priority

thread, and used the information bus to publish its data. When publishing

its data, it would acquire a mutex, do writes to the bus, and release the

mutex. If an interrupt caused the information bus thread to be scheduled

while this mutex was held, and if the information bus thread then attempted

to acquire this same mutex in order to retrieve published data, this would

cause it to block on the mutex, waiting until the meteorological thread

released the mutex before it could continue. The spacecraft also contained

a communications task that ran with medium priority.

Most of the time this combination worked fine. However, very infrequently

it was possible for an interrupt to occur that caused the (medium priority)

communications task to be scheduled during the short interval while the

(high priority) information bus thread was blocked waiting for the (low

priority) meteorological data thread. In this case, the long-running

communications task, having higher priority than the meteorological task,

would prevent it from running, consequently preventing the blocked

information bus task from running. After some time had passed, a watchdog

timer would go off, notice that the data bus task had not been executed for

some time, conclude that something had gone drastically wrong, and initiate

a total system reset.

This scenario is a classic case of priority inversion.

HOW WAS THIS DEBUGGED?

VxWorks can be run in a mode where it records a total trace of all

interesting system events, including context switches, uses of

synchronization objects, and interrupts. After the failure, JPL engineers

spent hours and hours running the system on the exact spacecraft replica in

their lab with tracing turned on, attempting to replicate the precise

conditions under which they believed that the reset occurred. Early in the

morning, after all but one engineer had gone home, the engineer finally

reproduced a system reset on the replica. Analysis of the trace revealed

the priority inversion.

HOW WAS THE PROBLEM CORRECTED?

When created, a VxWorks mutex object accepts a boolean parameter that

indicates whether priority inheritance should be performed by the mutex.

The mutex in question had been initialized with the parameter off; had it

been on, the low-priority meteorological thread would have inherited the

priority of the high-priority data bus thread blocked on it while it held

the mutex, causing it be scheduled with higher priority than the

medium-priority communications task, thus preventing the priority inversion.

Once diagnosed, it was clear to the JPL engineers that using priority

inheritance would prevent the resets they were seeing.

http://catless.ncl.ac.uk/Risks/19.49.html

Why concurrency matters (II)

Ever looked at the code of, e.g., the Linux Kernel ?

Why concurrency matters (III)

Between June 1985 and January 1987, a computerized
radiation therapy machine called Therac-25 caused 6 known
“accidents” (death of patients!) of massive radiations
overdoses.

Concurrent programming errors played an important role in
these accidents. “Race conditions” between different
concurrent activities in the control program resulted in bad
control outputs.

Because problems occurred only sporadically, they took a
long time to be detected and fixed.

Why concurrency is hard ...

A very large number of possible execution histories,
depending on the order in which instructions of individual
processes (or: threads) are processed.

Hence, concurrent programs are hard to write and verify.

They are almost impossible to debug,
at least with standard techniques.

Rationale (I)

The practice of concurrent/communicating systems was/is:
" - not a stable craft, nor a well-established science
" - not equipped with a standard set of constructions
" (which do exist to some extent for sequential systems)

The naive way: extend known sequential models
The foundational way:
! - build a dedicated foundational model without “legacy”
" - develop and study its theory
! - analyze what arises “naturally” within this model

Theories usually arise to explain practice ...

Rationale (II)

Milner 89: “Communication and Concurrency”
" - closed communication protocols
" - parallel computation
" - CCS

Milner 99: “Communicating and Mobile Systems”
" - open/dynamic communication protocols
" - distributed and mobile computation, Internet
" - Pi Calculus

Two calculi

Rationale (III)

Why communicating/mobile systems ?
- increasing number of existing systems
- tend to be complex
- tend to be error-prone

Why calculi ?
- compositional: break big things into several tiny things
- algebraic: ease mechanical verification
- syntactic: provide basis for programming languages

History of this course @ EPFL

2000/01 + 2001/02
! Theory of Communicating & Mobile Systems
2002
! Concurrency Theory
2002
! Foundations of Programming (with Prof. Odersky)
2002/03 + 2003/04
! Concurrency: Languages, Programming & Theory
" (with Prof. Odersky)
2003 (+ 2004)
! Advanced Topics on Programming Languages & Concurrency
" (with Prof. Odersky)
2005 ...

Objectives

(better) understanding concurrency

analytical (mathematical) skills

presentation skills

Course Web

http://lamp.epfl.ch/
! Teaching

or

http://lamp.epfl.ch/~uwe/
! Courses

