Concurrency Semantics Week 9

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
May 12, 2005
\$Id: notes-9.tex,v 1.3 2005/05/12 14:10:31 jobo Exp \$
7.13 Notation (Late transitions) We use the following sets of entities with corresponding meta-variables:

$$
\left.\begin{array}{llll|l}
\mathcal{N} & \text { names } & a, b, c \ldots, x, y, z \\
\mathcal{A} & \text { actions } & \pi & ::=\tau & x(\vec{y}) \\
\mathcal{L} & \text { labels } & \pi & ::=\tau & x(\vec{y})
\end{array} \right\rvert\, \begin{aligned}
& \boldsymbol{\nu} \vec{z}\rangle) \bar{x}\langle\vec{y}\rangle
\end{aligned}
$$

where in bound output $(\boldsymbol{\nu} \vec{z}) \bar{x}\langle\vec{y}\rangle$, we require $\tilde{z} \subseteq \tilde{y}$. We write $\bar{x}\langle\vec{y}\rangle$ for $(\boldsymbol{\nu} \vec{z}) \bar{x}\langle\vec{y}\rangle$ when \vec{z} is empty.

7.14 Definition (Late Operational Semantics)

The LTS $\left(\mathcal{P}^{\pi}, \mathcal{T}^{\mathrm{L}}\right)$ of sequential process expressions over \mathcal{A} has \mathcal{P}^{π} as states, and its transitions \mathcal{T}^{L} are precisely generated by the following rules:

$$
\begin{aligned}
& \text { (PRE) } \mu \cdot P \xrightarrow{\mu} P \\
& \text { (RES) } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} c) P \xrightarrow{\mu}(\boldsymbol{\nu} c) P^{\prime}} \text { if } c \notin \mathrm{n}(\mu) \\
& \text { (OPEN) } \frac{P \xrightarrow{(\boldsymbol{\nu} c) P \xrightarrow{(\boldsymbol{\nu} \vec{b}) \bar{a}\langle\vec{z}\rangle} P^{\prime}} \text { if } \vec{z} \ni c \notin\{a, \vec{b}\}\langle\vec{a}\langle\vec{z}\rangle}{P^{\prime}} \\
& \left(\mathrm{PAR}_{1}\right) \frac{P_{1} \xrightarrow{\mu} P_{1}^{\prime}}{P_{1}\left|P_{2} \xrightarrow{\mu} P_{1}^{\prime}\right| P_{2}} \text { if } \operatorname{bn}(\mu) \cap \operatorname{fn}\left(P_{2}\right)=\emptyset \\
& \left(\mathrm{CLOSE}_{1}\right) \xrightarrow{P_{1} \xrightarrow{a(\vec{x})} P_{1}^{\prime} \quad P_{2} \xrightarrow{(\boldsymbol{\nu} \vec{c}) \bar{a}\langle\vec{b}\rangle} P_{2}^{\prime}} \text { if } \Phi \\
& \text { where } \Phi=\left(\{\vec{c}\} \cap \operatorname{fn}\left(P_{1}\right)=\emptyset \wedge|\vec{x}|=|\vec{b}|\right) \\
& \left(\mathrm{SUM}_{1}\right) \frac{P_{1} \xrightarrow{\mu} P_{1}^{\prime}}{P_{1}+P_{2} \xrightarrow{\mu} P_{1}^{\prime}} \\
& \text { (REP) } \frac{P \mid!P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \quad \text { (ALP) } \frac{Q \xrightarrow{\mu} Q^{\prime}}{P \xrightarrow{\mu} Q^{\prime}} \text { if } P={ }_{\alpha} Q
\end{aligned}
$$

where the obvious symmetric counterparts for the rules $\left(\mathrm{PAR}_{1}\right),\left(\mathrm{CLOSE}_{1}\right)$ and $\left(\mathrm{SUM}_{1}\right)$ are omitted.
7.15 Notation If R is a binary relation, then $R^{=}$denotes its symmetric closure $R \cup R^{-1}$.

7.16 Definition (Distinction)

1. A distinction $D \subseteq(\mathcal{N} \times \mathcal{N})$ is a finite symmetric irreflexive relation on names.
2. Let $N \subseteq \mathcal{N}$. Then

$$
N^{\neq} \stackrel{\text { def }}{=}\{(x, y) \mid x, y \in N \wedge x \neq y\} .
$$

3. A substitution σ respects a distinction D if $(x, y) \in D$ implies $\sigma x \neq \sigma y$.
4. A D-congruence is an equivalence that is preserved by those contexts that do not use the names in D as "hole-binding" names.

7.17 Definition (Strong Open Bisimulation)

The set $\left\{\sim^{D} \mid D\right.$ is a distinction $\}$ is
the largest family of symmetric relations such that if $P \sim^{D} Q$ and σ respects D, then

- if $\sigma P \xrightarrow{\mu} P^{\prime}$ and μ is not a bound output, then there is Q^{\prime} such that $\sigma Q \xrightarrow{\mu} Q^{\prime}$
with $P^{\prime} \sim^{\sigma D} Q^{\prime}$.
- if $\sigma P \xrightarrow{(\boldsymbol{\nu} \vec{w}) \bar{y}\langle\vec{z}\rangle} P^{\prime}$, then
there are $\vec{w}^{\prime}, Q^{\prime}$ with $\left|\vec{w}^{\prime}\right|=|\vec{w}|$ such that
$\sigma P \xrightarrow{\left(\boldsymbol{\nu} \vec{w}^{\prime}\right) \bar{y}\left\langle\left\{\vec{w}^{\prime} / \vec{w}\right\} \vec{z}\right\rangle}\left\{\vec{w}^{\prime} / \vec{w}\right\} P^{\prime}$ and
$\sigma Q \xrightarrow{\left(\boldsymbol{\nu} \vec{w}^{\prime}\right) \bar{y}\langle\vec{z}\rangle} Q^{\prime}$ with $\left\{\vec{w}^{\prime} / \vec{w}\right\} P^{\prime} \sim^{D^{\prime}} Q^{\prime}$ where

$$
D^{\prime} \stackrel{\text { def }}{=} \sigma D \cup\left\{\vec{w}^{\prime}\right\}^{\neq} \cup\left(\left\{\vec{w}^{\prime}\right\} \times \operatorname{fn}(\sigma P, \sigma Q)\right)^{\neq}
$$

The weak version $\left(\approx^{D}\right)$ is defined as usual by allowing for a weak simulating transition in each case.
7.18 Theorem \sim^{D} and \approx^{D} are D-congruences.

