
Concurrency Semantics
Week 8

Course Notes 2005
EPFL – I&C

Uwe Nestmann
Johannes Borgström

May 4, 2005

1

$Id: notes-8.tex,v 1.2 2005/05/04 09:59:14 jobo Exp $

7.1 Notation (Polyadism) We use the following sets of
entities with corresponding meta-variables:

N names a, b, c . . . , x, y, z
A actions π ::= τ

∣

∣ x(~y)
∣

∣ x〈~y〉
L labels π ::= τ

∣

∣ x(~y)
∣

∣ (ν~z)x〈~y〉

where in bound output (ν~z)x〈~y〉, we require z̃ ⊆ ỹ.
We write x〈~y〉 for (ν~z)x〈~y〉 when ~z is empty.

7.2 Definition (Operational Semantics)
The LTS (Pπ, T) of sequential process expressions
over A has Pπ as states, and its transitions T are
precisely generated by the following rules:

(TAU) τ.P
τ

−−→ P (OUT) a〈~b〉.P
a〈~b〉

−−−−→ P

(INP)
~b ⊆ N

a(~x).P
a~b

−−−→ {
~b/~x}P

if |~b| = |~x|

(RES)
P

µ
−−→ P ′

(νc)P
µ
−−→ (νc)P ′

if c 6∈ n(µ)

(OPEN)
P

(ν~b) a〈~z〉
−−−−−−−→ P ′

(νc)P
(νc~b) a〈~z〉

−−−−−−−−→ P ′

if ~z 3 c 6∈ {a,~b}

(PAR1)
P1

µ
−−→ P ′

1

P1 |P2
µ
−−→ P ′

1 |P2

if bn(µ) ∩ fn(P2) = ∅

(CLOSE)
P1

a~b
−−−→ P ′

1 P2

(ν~c) a〈~b〉
−−−−−−−→ P ′

2

P1 |P2
τ

−−→ (ν~c) (P ′
1 |P

′
2)

if {~c} ∩ fn(P1) = ∅

(SUM1)
P1

µ
−−→ P ′

1

P1 + P2
µ
−−→ P ′

1

(REP)
P | !P

µ
−−→ P ′

!P
µ
−−→ P ′

(ALP)
Q

µ
−−→ Q′

P
µ
−−→ Q′

if P =α Q

2

7.3 Definition (Asynchrony)
The asynchronous π-calculus is the subset of the stan-
dard (then called synchronous) π-calculus given by:

1. constraining sending to the form y〈z̃〉 (without
any suffix);

2. removing the summation operator

The syntax of PA is generated by the BNF-grammar:

P ::= 0
∣

∣ y〈z̃〉
∣

∣ y(x̃).P
∣

∣ P |P
∣

∣ (νa)P
∣

∣ !P

where terms of the form y〈z̃〉 are called messages.

3

