Concurrency Semantics Week 8

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
May 4, 2005
\$Id: notes-8.tex,v 1.2 2005/05/04 09:59:14 jobo Exp \$
7.1 Notation (Polyadism) We use the following sets of entities with corresponding meta-variables:

$$
\begin{array}{llll}
\mathcal{N} & \text { names } & a, b, c \ldots, x, y, z \\
\mathcal{A} & \text { actions } & \pi & ::=\tau \\
\mathcal{L} & \text { labels } & \pi & ::=\tau \\
& \text { la } & x(\vec{y}) & \bar{x}\langle\vec{y}\rangle \\
(\boldsymbol{\nu} \vec{z}) \bar{x}\langle\vec{y}\rangle
\end{array}
$$

where in bound output $(\boldsymbol{\nu} \vec{z}) \bar{x}\langle\vec{y}\rangle$, we require $\tilde{z} \subseteq \tilde{y}$. We write $\bar{x}\langle\vec{y}\rangle$ for $(\boldsymbol{\nu} \vec{z}) \bar{x}\langle\vec{y}\rangle$ when \vec{z} is empty.

7.2 Definition (Operational Semantics)

The LTS $\left(\mathcal{P}^{\pi}, \mathcal{T}\right)$ of sequential process expressions over \mathcal{A} has \mathcal{P}^{π} as states, and its transitions \mathcal{T} are precisely generated by the following rules:

$$
\begin{aligned}
& \text { (TAU) } \tau . P \xrightarrow{\tau} P \quad \text { (OUT) } \bar{a}\langle\vec{b}\rangle . P \xrightarrow{\bar{a}\langle\vec{b}\rangle} P \\
& \text { (INP) } \frac{\vec{b} \subseteq \mathcal{N}}{a(\vec{x}) \cdot P \xrightarrow{a \vec{b}}\{\vec{b} / \vec{x}\} P} \text { if }|\vec{b}|=|\vec{x}| \\
& \text { (RES) } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} c) P \xrightarrow{\mu}(\boldsymbol{\nu} c) P^{\prime}} \text { if } c \notin \mathrm{n}(\mu) \\
& \text { (OPEN) } \frac{P \xrightarrow{(\boldsymbol{\nu} \boldsymbol{\nu} \vec{b}) \bar{a}\langle\vec{z}\rangle} P^{\prime}}{(\boldsymbol{\nu} c) P \xrightarrow{(\boldsymbol{\nu} c \vec{b}) \bar{a}\langle\vec{z}\rangle} P^{\prime}} \text { if } \vec{z} \ni c \notin\{a, \vec{b}\} \\
& \left(\mathrm{PAR}_{1}\right) \frac{P_{1} \xrightarrow{\mu} P_{1}^{\prime}}{P_{1}\left|P_{2} \xrightarrow{\mu} P_{1}^{\prime}\right| P_{2}} \text { if } \operatorname{bn}(\mu) \cap \operatorname{fn}\left(P_{2}\right)=\emptyset \\
& \text { (CLOSE) } \left.\xrightarrow\left[{P_{1} \xrightarrow{a \vec{b}} P_{1}^{\prime} \xrightarrow{\tau}(\boldsymbol{\nu} \vec{c})\left(P_{1}^{\prime} \mid P_{2}^{\prime}\right.}\right)\right]{\stackrel{(\boldsymbol{\nu} \vec{c}) \bar{a}\langle\vec{b}\rangle}{\longrightarrow}} P_{2}^{\prime} \text { if }\{\vec{c}\} \cap \operatorname{fn}\left(P_{1}\right)=\emptyset \\
& \left(\mathrm{SUM}_{1}\right) \frac{P_{1} \xrightarrow{\mu} P_{1}^{\prime}}{P_{1}+P_{2} \xrightarrow{\mu} P_{1}^{\prime}} \\
& \text { (REP) } \frac{P \mid!P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \\
& \text { (ALP) } \frac{Q \xrightarrow{\mu} Q^{\prime}}{P \xrightarrow{\mu} Q^{\prime}} \text { if } P={ }_{\alpha} Q
\end{aligned}
$$

7.3 Definition (Asynchrony)

The asynchronous π-calculus is the subset of the standard (then called synchronous) π-calculus given by:

1. constraining sending to the form $\bar{y}\langle\tilde{z}\rangle$ (without any suffix);
2. removing the summation operator

The syntax of \mathcal{P}^{A} is generated by the BNF-grammar:

$$
P \quad::=\mathbf{0}|\bar{y}\langle\tilde{z}\rangle| y(\tilde{x}) . P|P| P|(\boldsymbol{\nu} a) P|!P
$$

where terms of the form $\bar{y}\langle\tilde{z}\rangle$ are called messages.

