Concurrency Semantics Week 7

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
April 29, 2005

6 Value-Passing CCS

6.1 Notation We use the following sets of entities with corresponding meta-variables:

\mathcal{I}	process identifiers	$\mathrm{A}, \mathrm{B} \ldots$
$\mathcal{\mathcal { N }}$	(channel) names	$a, b, c \ldots$
\mathcal{V}	values	v, w
\mathcal{X}	variables	x, y, z
$\mathcal{\mathcal { A }}$	actions	$\mu::=\bar{a}\langle v\rangle\|a(x)\| \tau$

"negative" actions $\bar{a}\langle v\rangle$: send name v over channel a.
"positive" actions $a(x)$: receive any value, say v, over channel a and "bind the result" to variable x.

Binding results in substitution $\{v / x\}$ of the formal parameter x by the actual parameter v.
6.2 Definition (Value-Passing Processes) The set $\mathcal{P}^{\mathrm{VP}}$ is defined by the same grammar as the set \mathcal{P} except that actions μ are now interpreted as in Notation 6.1.

6.3 Definition (Free and Bound Names)

The sets $\mathrm{fn}(P)$ and $\mathrm{bn}(P)$ are defined inductively precisely as for concurrent process expressions, except for the base cases of actions.

$$
\begin{aligned}
& \mathrm{fn}(\mu) \stackrel{\text { def }}{=} \begin{cases}\{a, \vec{v}\} & \text { if } \mu=\bar{a}\langle\vec{v}\rangle \\
\{a\} & \text { if } \mu=a(\vec{x}) \\
\emptyset & \text { if } \mu=\tau\end{cases} \\
& \operatorname{bn}(\mu) \stackrel{\text { def }}{=} \begin{cases}\emptyset & \text { if } \mu=\bar{a}\langle\vec{v}\rangle \\
\{\vec{x}\} & \text { if } \mu=a(\vec{x}) \\
\emptyset & \text { if } \mu=\tau\end{cases}
\end{aligned}
$$

α-conversion now includes also the consistent renaming of input variables.
Substitution is defined accordingly, avoiding nameclashes via silent α-conversion wherever necessary.
6.4 Definition (Operational Semantics) The LTS $\left(\mathcal{P}^{\mathrm{VP}}, \mathcal{T}\right)$ of sequential process expressions over \mathcal{A} has $\mathcal{P}^{\mathrm{VP}}$ as states, and its transitions \mathcal{T} are precisely generated
by the operational semantics of \mathcal{P}, with the rules PRE and COM replaced by the following four rules:

$$
\begin{gathered}
\text { TAU: } \tau . P \xrightarrow{\tau} P \\
\text { OUT: } \bar{a}\langle v\rangle . P \xrightarrow{\bar{a}\langle v\rangle} P \quad \text { INP: } \frac{v \in \mathcal{V}}{a(x) . P \xrightarrow{a v}\{v / x\} P} \\
\text { COM: } \frac{P \xrightarrow{\bar{a}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{a v} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}
\end{gathered}
$$

6.5 Definition (Translational Semantics) Let $\mathcal{V}=\left\{v_{0} \cdots v_{n}\right\}$ be finite.

$\llbracket \rrbracket: \mathcal{P} \mathrm{VP}$	\rightarrow	\mathcal{P}
$\llbracket \bar{a}\langle v\rangle \cdot P \rrbracket$	$\stackrel{\text { def }}{=}$	$\overline{a_{v}} \llbracket P \rrbracket$
$\llbracket a(x) \cdot P \rrbracket$	$\stackrel{\text { def }}{=}$	$\sum_{v \in \mathcal{V}} a_{v} \cdot \llbracket\{v / x\} P \rrbracket$
$\llbracket \mathbf{0} \rrbracket$	$\stackrel{\text { def }}{=}$	$\mathbf{0}$
$\llbracket \mu \cdot P \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket \mu \rrbracket \cdot \llbracket P \rrbracket$
$\llbracket M_{1}+M_{2} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket M_{1} \rrbracket+\llbracket M_{2} \rrbracket$
$\llbracket \mathrm{~A}\langle\vec{a}\rangle \rrbracket$	$\stackrel{\text { def }}{=}$	$\mathrm{A}\langle\llbracket \vec{a} \rrbracket\rangle$
$\llbracket P_{1} \mid P_{2} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket P_{1} \rrbracket \mid \llbracket P_{2} \rrbracket$
$\llbracket(\boldsymbol{\nu} a) P \rrbracket$	$\stackrel{\text { def }}{=}$	$(\boldsymbol{\nu} \llbracket a \rrbracket) \llbracket P \rrbracket$
$\llbracket a \rrbracket$	$\stackrel{\text { def }}{=}$	$a_{v_{0}} \cdots a_{v_{n}}$
$\llbracket a \vec{b} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket a \rrbracket \llbracket \vec{b} \rrbracket$

Defining equations for process constants must also be translated.

$$
\llbracket \mathrm{A}(\vec{x}):=M \rrbracket \stackrel{\text { def }}{=} \mathrm{A}(\llbracket \vec{x} \rrbracket):=\llbracket M \rrbracket
$$

6.6 Proposition Let $P, P^{\prime} \in \mathcal{P}^{\mathrm{VP}}$. Let:

$$
\begin{array}{cc}
\llbracket \bar{a}\langle v\rangle \rrbracket & \stackrel{\text { def }}{=} \\
\llbracket a_{v} \rrbracket & \stackrel{\text { def }}{=} \\
\llbracket \tau \rrbracket & a_{v} \\
\llbracket & \text { def } \\
= & \tau
\end{array}
$$

Then $P \xrightarrow{\mu} P^{\prime}$ iff $\llbracket P \rrbracket \xrightarrow{\llbracket \mu \rrbracket} \llbracket P^{\prime} \rrbracket$.

6.7 Notation (Polyadic Communication)

The polyadic actions $\bar{a}\langle\vec{v}\rangle$ and $a(\vec{x})$ (with \vec{x} pairwise different) transmit many values at a time.
All definitions are straightforwardly generalized.
6.8 Proposition (Value-Passing) CCS is Turing-powerful.
6.9 Proposition The halting problem for Turing machines can be reduced to the existence of inifinite sequences of internal transitions.

7 Pi Calculus

7.1 Notation We use the following sets of entities with corresponding meta-variables:

$$
\begin{array}{lll}
\mathcal{N} & \text { names } & a, b, c \ldots, x, y, z \\
\mathcal{A} & \text { actions } & \pi::=\bar{x}\langle y\rangle|x(y)| \tau
\end{array}
$$

7.2 Definition (Mobile Processes)

The set \mathcal{P}^{π} of π-calculus process expressions is defined (precisely) by the following syntax:

$$
\begin{aligned}
P & ::=\mathrm{A}\langle\vec{a}\rangle|M| P|P|(\boldsymbol{\nu} a) P \mid!P \\
M & ::=\mathbf{0}|\pi \cdot P| M+M
\end{aligned}
$$

7.3 Definition (Process Contexts) A π calculus process context $C[\cdot]$ is (precisely) defined by the following syntax:

$$
\begin{array}{rll}
C[\cdot] & ::= & {[\cdot]|\pi . C[\cdot]+M| M+\pi . C[\cdot]} \\
& |\quad P| C[\cdot]|C[\cdot]| P|(\boldsymbol{\nu} a) C[\cdot]|!C[\cdot]
\end{array}
$$

The elementary process contexts are

$$
\begin{array}{ccc}
(\boldsymbol{\nu} a)[\cdot] & \pi \cdot[\cdot]+M & M+\pi \cdot[\cdot] \\
![\cdot] & {[\cdot] \mid P} & P \mid[\cdot]
\end{array}
$$

7.4 Definition (Process Congruence)

Let \cong be an equivalence relation over \mathcal{P}^{π}.
Then \cong is said to be a process congruence, if it is preserved by all elementary contexts; i.e., $P \cong Q$ implies all of the following:
$\pi \cdot P+M \cong \pi \cdot Q+M$
$P|R \cong Q| R$
$M+\pi \cdot P \cong M+\pi \cdot Q$
$R|P \cong R| Q$
$!P \cong!Q$
$(\boldsymbol{\nu} a) P \cong(\boldsymbol{\nu} a) Q$
7.5 Proposition An arbitrary equivalence relation \cong over processes \mathcal{P}^{π} is a process congruence if and only if, for all contexts $C[\cdot], P \cong Q$ implies $C[P] \cong C[Q]$.

7.6 Definition (Structural congruence)

Structural congruence, written \equiv, is the (smallest) process congruence over \mathcal{P}^{π} determined by the following equations.

1. $={ }_{\alpha}$ (now for two binding operators!)
2. commutative monoid laws for $\left(\mathcal{M}^{\pi},+, \mathbf{0}\right)$
3. commutative monoid laws for $\left(\mathcal{P}^{\pi}, \mid, \mathbf{0}\right)$
4. $\quad(\boldsymbol{\nu} a)(P \mid Q) \equiv P \mid(\boldsymbol{\nu} a) Q, \quad$ if $a \notin \mathrm{fn}(P)$

$$
(\boldsymbol{\nu} a b) P \equiv(\boldsymbol{\nu} b a) P
$$

$$
(\boldsymbol{\nu} a) \mathbf{0} \equiv \mathbf{0}
$$

5. $\mathrm{A}\langle\vec{b}\rangle \equiv\{\vec{b} / \vec{a}\} M$, if $\mathrm{A}(\vec{a}) \stackrel{\text { def }}{=} M$.
6. $!P \equiv P \mid!P$

7.7 Definition (Standard Form)

A π-calculus process expression

$$
(\boldsymbol{\nu} \vec{a})\left(M_{1}|\cdots| M_{m}\left|!Q_{1}\right| \cdots \mid!Q_{n}\right)
$$

where each M_{i} is a non-empty sum, is said to be in standard form, if each Q_{j} is itself in standard form.
If $m=0$ then $M_{1}|\cdots| M_{m}$ means $\mathbf{0}$.
If $n=0$ then $!Q_{1}|\cdots|!Q_{n}$ means $\mathbf{0}$.
If \vec{a} is empty then there is no restriction.
7.8 Theorem Every π-calculus process expression is structurally congruent to some standard form.
7.9 Definition The reaction relation \rightarrow over \mathcal{P}^{π} is generated precisely by the following rules:

$$
\text { TAU: } \tau . P+M \rightarrow P
$$

$$
\begin{aligned}
& \text { REACT: } \bar{y}\langle z\rangle . P+M|y(x) . Q+N \rightarrow\{z / x\} P| Q \\
& \text { PAR: } \frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \quad \text { RES: } \frac{P \rightarrow P^{\prime}}{(\boldsymbol{\nu} a) P \rightarrow(\boldsymbol{\nu} a) P^{\prime}} \\
& \text { STRUCT: } \frac{P \rightarrow P^{\prime}}{Q \rightarrow Q^{\prime}} \text { IF } P \equiv Q \text { AND } P^{\prime} \equiv Q^{\prime}
\end{aligned}
$$

