
Concurrency Semantics
Week 7

Course Notes 2005
EPFL – I&C

Uwe Nestmann
Johannes Borgström

April 29, 2005

1

$Id: notes-7.tex,v 1.7 2005/04/28 15:22:37 jobo Exp $

6 Value-Passing CCS

6.1 Notation We use the following sets of entities with
corresponding meta-variables:

I process identifiers A,B . . .
N (channel) names a, b, c . . .
V values v, w
X variables x, y, z
A actions µ ::= a〈v〉

∣

∣ a(x)
∣

∣ τ

“negative” actions a〈v〉: send name v over channel a.

“positive” actions a(x): receive any value, say v, over
channel a and “bind the result” to variable x.

Binding results in substitution {v/x} of the for-
mal parameter x by the actual parameter v.

6.2 Definition (Value-Passing Processes) The set PVP is
defined by the same grammar as the set P except
that actions µ are now interpreted as in Notation 6.1.

6.3 Definition (Free and Bound Names)
The sets fn(P) and bn(P) are defined inductively
precisely as for concurrent process expressions, ex-
cept for the base cases of actions.

fn(µ)
def
=











{a,~v} if µ = a〈~v〉

{a} if µ = a(~x)

∅ if µ = τ

bn(µ)
def
=











∅ if µ = a〈~v〉

{~x} if µ = a(~x)

∅ if µ = τ

α-conversion now includes also the consistent re-
naming of input variables.
Substitution is defined accordingly, avoiding name-
clashes via silent α-conversion wherever necessary.

6.4 Definition (Operational Semantics) The LTS (PVP, T)
of sequential process expressions over A has PVP as
states, and its transitions T are precisely generated

2

by the operational semantics of P , with the rules PRE

and COM replaced by the following four rules:

TAU: τ.P
τ

−−→ P

OUT: a〈v〉.P
a〈v〉

−−−−→ P
INP:

v ∈ V

a(x).P
av

−−−→ {v/x}P

COM:
P

a〈v〉
−−−−→ P ′ Q

av
−−−→ Q′

P | Q
τ

−−→ P ′ | Q′

6.5 Definition (Translational Semantics) Let V = {v0 · · · vn}
be finite.

[[]] : PVP → P

[[a〈v〉.P]]
def
= av.[[P]]

[[a(x).P]]
def
=

∑

v∈V

av.[[{v/x}P]]

[[0]]
def
= 0

[[µ.P]]
def
= [[µ]].[[P]]

[[M1 + M2]]
def
= [[M1]] + [[M2]]

[[A〈~a 〉]]
def
= A〈 [[~a]] 〉

[[P1 |P2]]
def
= [[P1]] | [[P2]]

[[(νa)P]]
def
= (ν[[a]]) [[P]]

[[a]]
def
= av0

· · · avn

[[a~b]]
def
= [[a]][[~b]]

Defining equations for process constants must also
be translated.

[[A(~x) := M]]
def
= A([[~x]]) := [[M]]

6.6 Proposition Let P, P ′ ∈ PVP. Let:

[[a〈v〉]]
def
= av

[[av]]
def
= av

[[τ]]
def
= τ

Then P
µ
−−→ P ′ iff [[P]]

[[µ]]
−−−−→ [[P ′]].

6.7 Notation (Polyadic Communication)
The polyadic actions a〈~v〉 and a(~x) (with ~x pairwise
different) transmit many values at a time.
All definitions are straightforwardly generalized.

6.8 Proposition (Value-Passing) CCS is Turing-powerful.

3

6.9 Proposition The halting problem for Turing machines
can be reduced to the existence of inifinite sequences
of internal transitions.

7 Pi Calculus

7.1 Notation We use the following sets of entities with
corresponding meta-variables:

N names a, b, c . . . , x, y, z
A actions π ::= x〈y〉

∣

∣ x(y)
∣

∣ τ

7.2 Definition (Mobile Processes)
The set Pπ of π-calculus process expressions is defined
(precisely) by the following syntax:

P ::= A〈~a 〉
∣

∣ M
∣

∣ P |P
∣

∣ (νa)P
∣

∣ !P

M ::= 0
∣

∣ π.P
∣

∣ M + M

7.3 Definition (Process Contexts) A π calculus process con-
text C[·] is (precisely) defined by the following syn-
tax:

C[·] ::= [·]
∣

∣ π.C[·] + M
∣

∣ M + π.C[·]
∣

∣ P |C[·]
∣

∣ C[·]|P
∣

∣ (νa)C[·]
∣

∣ !C[·]

The elementary process contexts are

(νa) [·] π.[·] + M M + π.[·]
! [·] [·] | P P | [·]

7.4 Definition (Process Congruence)
Let ∼= be an equivalence relation over Pπ.
Then ∼= is said to be a process congruence,
if it is preserved by all elementary contexts;
i.e., P ∼= Q implies all of the following:

π.P + M ∼= π.Q + M
M + π.P ∼= M + π.Q

!P ∼= !Q

P |R ∼= Q|R
R|P ∼= R|Q

(νa)P ∼= (νa)Q

7.5 Proposition An arbitrary equivalence relation ∼= over
processes Pπ is a process congruence if and only if,
for all contexts C[·], P ∼= Q implies C[P] ∼= C[Q].

7.6 Definition (Structural congruence)
Structural congruence, written ≡, is the (smallest)
process congruence over Pπ determined by the fol-
lowing equations.

4

1. =α (now for two binding operators!)

2. commutative monoid laws for (Mπ,+,0)

3. commutative monoid laws for (Pπ, | ,0)

4. (νa) (P |Q) ≡ P | (νa)Q, if a 6∈ fn(P)
(νab)P ≡ (νba)P
(νa)0 ≡ 0

5. A〈~b 〉 ≡ {
~b/~a}M , if A(~a)

def
= M .

6. !P ≡ P |!P

7.7 Definition (Standard Form)
A π-calculus process expression

(ν~a) (M1| · · · |Mm|!Q1| · · · |!Qn)

where each Mi is a non-empty sum, is said to be in
standard form, if each Qj is itself in standard form.
If m = 0 then M1| · · · |Mm means 0.
If n = 0 then !Q1| · · · |!Qn means 0.
If ~a is empty then there is no restriction.

7.8 Theorem Every π-calculus process expression is struc-
turally congruent to some standard form.

7.9 Definition The reaction relation −→ over Pπ

is generated precisely by the following rules:

TAU: τ.P+M −→ P

REACT: y〈z〉.P+M | y(x).Q+N −→ {z/x}P | Q

PAR:
P −→ P ′

P |Q −→ P ′|Q
RES:

P −→ P ′

(νa)P −→ (νa)P ′

STRUCT:
P −→ P ′

Q −→ Q′ IF P ≡ Q AND P ′
≡ Q′

5

