Concurrency Semantics Week 7

Course Notes 2005 EPFL – I&C

Uwe Nestmann Johannes Borgström

April 29, 2005

\$Id: notes-7.tex,v 1.7 2005/04/28 15:22:37 jobo Exp \$

6 Value-Passing CCS

6.1 Notation We use the following sets of entities with corresponding meta-variables:

\mathcal{I}	process identifiers	Α, Β
\mathcal{N}	(channel) names	$a, b, c \dots$
\mathcal{V}	values	v, w
\mathcal{X}	variables	x,y,z
\mathcal{A}	actions	$\mu ::= \overline{a} \langle v \rangle \mid a(x) \mid \tau$

"negative" actions $\overline{a}\langle v \rangle$: send name v over channel a.

"positive" actions *a*(*x*): receive any value, say *v*, over channel *a* and "bind the result" to variable *x*.

Binding results in *substitution* $\{v/_x\}$ of the formal parameter x by the actual parameter v.

6.2 Definition (Value-Passing Processes) The set \mathcal{P}^{VP} is defined by the same grammar as the set \mathcal{P} except that actions μ are now interpreted as in Notation 6.1.

6.3 Definition (Free and Bound Names)

The sets fn(P) and bn(P) are defined inductively precisely as for concurrent process expressions, except for the base cases of actions.

$$\operatorname{fn}(\mu) \stackrel{\text{def}}{=} \begin{cases} \{a, \vec{v}\} & \text{if } \mu = \overline{a} \langle \vec{v} \rangle \\ \{a\} & \text{if } \mu = a(\vec{x}) \\ \emptyset & \text{if } \mu = \tau \end{cases}$$

$$\operatorname{bn}(\mu) \stackrel{\text{def}}{=} \begin{cases} \emptyset & \text{if } \mu = \overline{a} \langle \vec{v} \rangle \\ \{ \vec{x} \} & \text{if } \mu = a(\vec{x}) \\ \emptyset & \text{if } \mu = \tau \end{cases}$$

 α -conversion now includes also the consistent renaming of input variables.

Substitution is defined accordingly, avoiding nameclashes via silent α -conversion wherever necessary.

6.4 Definition (Operational Semantics) The LTS $(\mathcal{P}^{VP}, \mathcal{T})$ of sequential process expressions over \mathcal{A} has \mathcal{P}^{VP} as states, and its transitions \mathcal{T} are precisely generated

by the operational semantics of \mathcal{P} , with the rules PRE and COM replaced by the following four rules:

TAU:
$$\tau . P \xrightarrow{\tau} P$$

OUT:
$$\overline{a}\langle v \rangle . P \xrightarrow{\overline{a}\langle v \rangle} P$$
 INP: $\frac{v \in \mathcal{V}}{a(x) . P \xrightarrow{av} \{v/_x\} P}$
COM: $\frac{P \xrightarrow{\overline{a}\langle v \rangle} P' \quad Q \xrightarrow{av} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'}$

6.5 Definition (Translational Semantics) Let $\mathcal{V} = \{v_0 \cdots v_n\}$ be finite.

$\llbracket \ \rrbracket \ : \ \mathcal{P}^{\mathrm{VP}}$	\rightarrow	\mathcal{P}
$[\![\overline{a}\langle v\rangle.P]\!]$	$\stackrel{\rm def}{=}$	$\overline{a_v}.\llbracket P \rrbracket$
$[\![a(x).P]\!]$	$\stackrel{\rm def}{=}$	$\sum_{v \in \mathcal{V}} a_v . \llbracket \{ v/_x \} P \rrbracket$
[[0]]	$\stackrel{\rm def}{=}$	0
$[\![\mu.P]\!]$	$\stackrel{\mathrm{def}}{=}$	$\llbracket\mu\rrbracket.\llbracketP\rrbracket$
$\llbracket M_1 + M_2 \rrbracket$	$\stackrel{\mathrm{def}}{=}$	$[\![M_1]\!] + [\![M_2]\!]$
$\llbracket A\langle \vec{a} \rangle rbracket$	$\stackrel{\rm def}{=}$	$A\langle\llbracket\vec{a}\rrbracket\rangle$
$\llbracket P_1 P_2\rrbracket$	$\stackrel{\text{def}}{=}$	$\llbracket P_1 \rrbracket \llbracket P_2 \rrbracket$
$\llbracket \left(\boldsymbol{\nu} a \right) P \rrbracket$	$\stackrel{\rm def}{=}$	$(\boldsymbol{\nu}\llbracket a \rrbracket) \llbracket P \rrbracket$
[[a]]	$\stackrel{\rm def}{=}$	$a_{v_0} \cdots a_{v_n}$
$[\![a\vec{b}]\!]$	$\stackrel{\mathrm{def}}{=}$	$[\![a]\!][\![\vec{b}]\!]$

Defining equations for process constants must also be translated.

$$\llbracket \mathsf{A}(\vec{x}) := M \rrbracket \stackrel{\text{def}}{=} \mathsf{A}(\llbracket \vec{x} \rrbracket) := \llbracket M \rrbracket$$

6.6 Proposition Let $P, P' \in \mathcal{P}^{VP}$. Let:

$$\begin{bmatrix} \overline{a} \langle v \rangle \end{bmatrix} \stackrel{\text{def}}{=} a_v$$
$$\begin{bmatrix} a_v \end{bmatrix} \stackrel{\text{def}}{=} a_v$$
$$\begin{bmatrix} \tau \end{bmatrix} \stackrel{\text{def}}{=} \tau$$

Then $P \xrightarrow{\mu} P'$ iff $\llbracket P \rrbracket \xrightarrow{\llbracket \mu \rrbracket} \llbracket P' \rrbracket$.

6.7 Notation (Polyadic Communication)

The *polyadic actions* $\overline{a}\langle \vec{v} \rangle$ and $a(\vec{x})$ (with \vec{x} pairwise different) *transmit many values at a time*. All definitions are straightforwardly generalized.

6.8 Proposition (Value-Passing) CCS is Turing-powerful.

6.9 Proposition The halting problem for Turing machines can be reduced to the existence of inifinite sequences of internal transitions.

7 Pi Calculus

- **7.1 Notation** We use the following sets of entities with corresponding meta-variables:
 - $\begin{array}{lll} \mathcal{N} & \textit{names} & a, b, c \dots, x, y, z \\ \mathcal{A} & \textit{actions} & \pi & ::= & \overline{x} \langle y \rangle \mid x(y) \mid \tau \end{array}$

7.2 Definition (Mobile Processes)

The set \mathcal{P}^{π} of π -calculus process expressions is defined (precisely) by the following syntax:

$$P ::= \mathsf{A}\langle \vec{a} \rangle \mid M \mid P \mid P \mid (\boldsymbol{\nu} a) P \mid !P$$
$$M ::= \mathbf{0} \mid \pi.P \mid M + M$$

7.3 Definition (Process Contexts) A π *calculus process context* $C[\cdot]$ is (precisely) defined by the following syntax:

$$\begin{array}{cccc} C[\cdot] & ::= & [\cdot] & \mid \pi.C[\cdot] + M & \mid M + \pi.C[\cdot] \\ & \mid & P|C[\cdot] & \mid C[\cdot]|P & \mid (\boldsymbol{\nu}a)C[\cdot] & \mid !C[\cdot] \end{array}$$

The elementary process contexts are

$(\boldsymbol{\nu}a)\left[\cdot\right]$	$\pi \cdot [\cdot] + M$	$M + \pi . [\cdot]$
! [·]	$[\cdot] \mid P$	$P \mid [\cdot]$

7.4 Definition (Process Congruence)

Let \cong be an equivalence relation over \mathcal{P}^{π} . Then \cong is said to be a process congruence, if it is preserved by all elementary contexts; i.e., $P \cong Q$ implies all of the following:

$\pi . P + M$	\cong	$\pi.Q + M$	P R	\cong	Q R
$M + \pi . P$	\cong	$M + \pi . Q$	R P	\cong	R Q
!P	\cong	!Q	$(\boldsymbol{\nu} a) P$	\cong	$(\boldsymbol{\nu}a)Q$

7.5 Proposition An arbitrary equivalence relation \cong over processes \mathcal{P}^{π} is a process congruence if and only if, for *all* contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$.

7.6 Definition (Structural congruence)

Structural congruence, written \equiv , is the (smallest) process congruence over \mathcal{P}^{π} determined by the following equations.

- 1. $=_{\alpha}$ (now for two binding operators!)
- 2. commutative monoid laws for $(\mathcal{M}^{\pi}, +, \mathbf{0})$
- 3. commutative monoid laws for $(\mathcal{P}^{\pi}, |, \mathbf{0})$

4.
$$(\boldsymbol{\nu}a) (P | Q) \equiv P | (\boldsymbol{\nu}a) Q$$
, if $a \notin \operatorname{fn}(P)$
 $(\boldsymbol{\nu}ab) P \equiv (\boldsymbol{\nu}ba) P$
 $(\boldsymbol{\nu}a) \mathbf{0} \equiv \mathbf{0}$

5.
$$A\langle \vec{b} \rangle \equiv \{\vec{b}/\vec{a}\}M$$
, if $A(\vec{a}) \stackrel{\text{def}}{=} M$.

$$6. ! P \equiv P ! ! P$$

7.7 Definition (Standard Form)

A π -calculus process expression

$$(\boldsymbol{\nu}\vec{a})(M_1|\cdots|M_m|!Q_1|\cdots|!Q_n)$$

where each M_i is a non-empty sum, is said to be in *standard form*, if each Q_j is itself in standard form. If m = 0 then $M_1 | \cdots | M_m$ means **0**. If n = 0 then $!Q_1 | \cdots ! !Q_n$ means **0**. If \vec{a} is empty then there is no restriction.

- **7.8 Theorem** Every π -calculus process expression is structurally congruent to some standard form.
- **7.9 Definition** The reaction relation \rightarrow over \mathcal{P}^{π} is generated precisely by the following rules:

TAU:
$$\tau . P + M \rightarrow P$$

 $\text{React: } \overline{y}\langle z\rangle.P{+}M\mid y(x).Q{+}N \ \rightarrow \{^z\!/_x\}P\mid Q$

PAR:
$$\frac{P \to P'}{P|Q \to P'|Q}$$
 RES: $\frac{P \to P'}{(\nu a) P \to (\nu a) P'}$
STRUCT: $\frac{P \to P'}{Q \to Q'}$ IF $P \equiv Q$ and $P' \equiv Q'$