Concurrency Semantics Week 6

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
April 27, 2005

5 Observation Equivalence

5.1 Definition (Weak Transitions)

Given any LTS $(\mathcal{Q}, \mathcal{T})$.
Then, the weak transition relations \Rightarrow and $\xlongequal{\mu}($ for $\mu \in \mathcal{A})$ are defined by:

1. $\Rightarrow \stackrel{\text { def }}{=} \xrightarrow{\tau}$ *
2. $\xlongequal{\mu} \stackrel{\text { def }}{=} \Rightarrow \xrightarrow{\mu} \Rightarrow$

5.2 Definition (Weak Simulation)

Given any LTS $(\mathcal{Q}, \mathcal{T})$.
Let S be a binary relation over \mathcal{Q}.
Then S is said to be a weak simulation
if, whenever $P S Q$,

- if $P \xrightarrow{\tau} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \Rightarrow Q^{\prime}$ and $P^{\prime} S Q^{\prime}$.
- if $P \xrightarrow{\lambda} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \stackrel{\lambda}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} S Q^{\prime}$.
Q weakly simulates P,
if there is a weak simulation S such that $P S Q$.

5.3 Lemma

Every strong simulation is also a weak simulation.

5.4 Definition (Weak Bisimulation)

A binary relation B is a weak bisimulation if both B and its converse B^{-1} are weak simulations. P and Q are weakly bisimilar, weakly equivalent, or observation equivalent, written $P \approx Q$, if there exists a weak bisimulation B with $P B Q$.
5.5 Remark $\approx=\bigcup\{B \mid B$ is weak bisimulation $\}$.
5.6 Proposition $P \sim Q$ implies $P \approx Q$.

5.7 Proposition (Weak Equivalence)

1. \approx is itself a weak bisimulation.

2 . \approx is an equivalence relation.

5.8 Theorem
 Weak equivalence \approx is a process congruence.

5.9 Definition (Weak simulation up to \sim)

S is a weak simulation up to \sim
if, whenever $P S Q$,

- if $P \rightarrow P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \Rightarrow Q^{\prime}$ and $P^{\prime} \sim S \sim Q^{\prime}$.
- if $P \xrightarrow{\lambda} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \stackrel{\lambda}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \sim S \sim Q^{\prime}$.
S is a weak bisimulation up to \sim if its converse also has this property.

5.10 Proposition

If B is a (weak) bisimulation up to \sim and $P B Q$, then $P \approx Q$.

5.11 Theorem (Unique Solution of Equations)

Let $\vec{X}=X_{1}, X_{2}, \ldots$ be a (possibly infinite) sequence of process variables. In the equations

$$
\begin{aligned}
& X_{1} \approx \mu_{11} \cdot X_{k(11)}+\cdots+\mu_{1 n_{1}} \cdot X_{k\left(1 n_{1}\right)} \\
& X_{2} \approx \mu_{21} \cdot X_{k(21)}+\cdots+\mu_{2 n_{1}} \cdot X_{k\left(2 n_{1}\right)}
\end{aligned}
$$

assume that $\mu_{i j} \neq \tau$. Then, up to \approx, there is a unique sequence P_{1}, P_{2}, \ldots of processes which satisfies the equations.

