Concurrency Semantics Week 6

Course Notes 2005 EPFL – I&C

Uwe Nestmann Johannes Borgström

April 27, 2005

 $Id: notes-6.tex,v 1.4 \ 2005/04/25 \ 16:16:12$ uwe Exp $\$

5 **Observation Equivalence**

5.1 Definition (Weak Transitions)

Given any LTS (Q, T). Then, the *weak* transition relations \Rightarrow and $\xrightarrow{\mu}$ (for $\mu \in A$) are defined by:

1.
$$\Rightarrow \stackrel{\text{def}}{=} \stackrel{\tau}{\longrightarrow}^*$$

2. $\stackrel{\mu}{\Longrightarrow} \stackrel{\text{def}}{=} \Rightarrow \stackrel{\mu}{\longrightarrow} \Rightarrow$

5.2 Definition (Weak Simulation)

Given any LTS (Q, T). Let *S* be a binary relation over *Q*. Then *S* is said to be a *weak simulation* if, whenever $P \ S \ Q$,

- if $P \xrightarrow{\tau} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \Rightarrow Q'$ and P' S Q'.
- if $P \xrightarrow{\lambda} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \xrightarrow{\lambda} Q'$ and P' S Q'.

Q weakly simulates P, if there is a weak simulation S such that $P \ S \ Q$.

5.3 Lemma

Every strong simulation is also a weak simulation.

5.4 Definition (Weak Bisimulation)

A binary relation *B* is a weak bisimulation if both *B* and its converse B^{-1} are weak simulations. *P* and *Q* are weakly bisimilar, weakly equivalent, or observation equivalent, written $P \approx Q$, if there exists a weak bisimulation *B* with *P B Q*.

- **5.5 Remark** $\approx = \bigcup \{ B \mid B \text{ is weak bisimulation } \}.$
- **5.6 Proposition** $P \sim Q$ implies $P \approx Q$.

5.7 Proposition (Weak Equivalence)

1. \approx is itself a weak bisimulation.

2. \approx is an equivalence relation.

5.8 Theorem

Weak equivalence \approx is a process congruence.

5.9 Definition (Weak simulation up to \sim)

S is a weak simulation up to \sim if, whenever P~S~Q,

- if $P \rightarrow P'$ then there is $Q' \in \mathcal{P}$ such that $Q \Rightarrow Q'$ and $P' \sim S \sim Q'$.
- if $P \xrightarrow{\lambda} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \xrightarrow{\lambda} Q'$ and $P' \sim S \sim Q'$.

S is a *weak bisimulation up to* \sim if its converse also has this property.

5.10 Proposition

If *B* is a (weak) bisimulation up to \sim and *P B Q*, then $P \approx Q$.

5.11 Theorem (Unique Solution of Equations)

Let $\vec{X} = X_1, X_2, ...$ be a (possibly infinite) sequence of process variables. In the equations

 $\begin{array}{rcl} X_{1} & \approx & \mu_{11}.X_{k(11)} + \dots + \mu_{1n_{1}}.X_{k(1n_{1})} \\ X_{2} & \approx & \mu_{21}.X_{k(21)} + \dots + \mu_{2n_{1}}.X_{k(2n_{1})} \\ \dots & \approx & \dots \end{array}$

assume that $\mu_{ij} \neq \tau$. Then, up to \approx , there is a unique sequence P_1, P_2, \ldots of processes which satisfies the equations.