Concurrency Semantics Week 5

Course Notes 2005 EPFL – I&C

Uwe Nestmann Johannes Borgström

April 27, 2005

\$Id: notes-5.tex,v 1.6 2005/04/25 16:16:12 uwe Exp \$

4 Congruence & Reaction

- **4.1 Notation** We often write $(\nu ab) P$ instead of $(\nu a) (\nu b) P$. We often omit trailing .0 and abbreviate *a*.0 by *a*.
- **4.2 Definition (Process Contexts)** A *process context* $C[\cdot]$ is (precisely) defined by the following syntax:

The elementary process contexts are

$$(\boldsymbol{\nu}a)\left[\cdot\right] \qquad \begin{array}{c} \mu.\left[\cdot\right] + M & M + \mu.\left[\cdot\right] \\ \left[\cdot\right] \mid P & P \mid \left[\cdot\right] \end{array}$$

The expression C[Q] denotes the result of filling the hole $[\cdot]$ of $C[\cdot]$ with process Q.

4.3 Definition (Process Congruence)

Let \cong be an equivalence relation over \mathcal{P} . Then \cong is said to be a process congruence, if it is preserved by all elementary contexts; i.e., $P \cong Q$ implies all of the following:

$$\begin{array}{rcl} \mu.P + M &\cong& \mu.Q + M & P|R &\cong& Q|R\\ M + \mu.P &\cong& M + \mu.Q & R|P &\cong& R|Q\\ & (\boldsymbol{\nu}a) P &\cong& (\boldsymbol{\nu}a) Q \end{array}$$

4.4 Proposition An arbitrary equivalence relation \cong over processes \mathcal{P} is a process congruence if and only if, for *all* contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$.

4.5 Theorem

Bisimilarity \sim is a process congruence.

4.6 Definition (Structural congruence)

Structural congruence, written \equiv , is the (smallest) process congruence over \mathcal{P} determined by the following equations.

1. $=_{\alpha}$

- 2. commutative monoid laws for $(\mathcal{M}, +, \mathbf{0})$
- 3. commutative monoid laws for $(\mathcal{P}, |, \mathbf{0})$

4.
$$(\boldsymbol{\nu}a) (P | Q) \equiv P | (\boldsymbol{\nu}a) Q$$
, if $a \notin \operatorname{fn}(P)$
 $(\boldsymbol{\nu}ab) P \equiv (\boldsymbol{\nu}ba) P$
 $(\boldsymbol{\nu}a) \mathbf{0} \equiv \mathbf{0}$

5. $A\langle \vec{b} \rangle \equiv \{\vec{b}/\vec{a}\}M_A$, if $A(\vec{a}) \stackrel{\text{def}}{=} M_A$.

Note that *n*-ary summation is already implicitly defined modulo the commutative monoid laws.

4.7 Definition (Standard Form)

A process expression $(\nu \vec{a}) (M_1 | \cdots | M_n)$, where each M_i is a non-empty sum, is said to be in *standard form*. If n = 0 then $M_1 | \cdots | M_n$ means **0**. If \vec{a} is empty then there is no restriction.

4.8 Theorem Every process is structurally congruent to some standard form.

4.9 Definition (Reaction Semantics)

The reaction relation \rightarrow over \mathcal{P} is generated precisely by the following rules:

TAU:
$$\tau . P + M \rightarrow P$$

React:
$$a.P+M \mid \overline{a}.Q+N \rightarrow P \mid Q$$

PAR:
$$\frac{P \to P'}{P \mid Q \to P' \mid Q}$$
 RES: $\frac{P \to P'}{(\nu a) P \to (\nu a) P'}$
STRUCT: $\frac{P \to P'}{Q \to Q'}$ IF $P \equiv Q$ and $P' \equiv Q'$

4.10 Proposition

If $P \xrightarrow{\mu} P'$ and $P \equiv Q$, then there is Q' such that $Q \xrightarrow{\mu} Q'$ and $P' \equiv Q'$.

4.11 Corollary

 \equiv is a strong bisimulation.

4.12 Theorem

$P \rightarrow P' \text{ iff } P \xrightarrow{\tau} \equiv P'.$

4.13 Definition (Strong Simulation up to \equiv)

A binary relation S (on \mathcal{P}) is a (*strong*) *simulation up to* \equiv if, whenever $P \ S \ Q$, then if $P \xrightarrow{\mu} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \xrightarrow{\mu} Q'$ and $P' \equiv S \equiv Q'$. S is a strong bisimulation up to \equiv if its converse also has this property.

4.14 Proposition

If *S* is a (strong) bisimulation up to \equiv and *P S Q*, then $P \sim Q$.