Concurrency Semantics Week 4

Course Notes 2005 EPFL – I&C

Uwe Nestmann Johannes Borgström

April 27, 2005

 $Id: notes-4.tex,v 1.3 \ 2005/04/25 \ 16:16:12$ uwe Exp $\$

3 Concurrent Processes

3.1 Definition (Concurrent Process Expressions)

The sets \mathcal{P} and \mathcal{M} of concurrent process expressions is defined by the following BNF-syntax:

$$P ::= A\langle \vec{a} \rangle \mid M \mid P|P \mid (\boldsymbol{\nu}a) P$$
$$M ::= \mathbf{0} \mid \mu . P \mid M + M$$

under the same assumptions on process identifiers as in the sequential case. The expression P|P denotes *the parallel composition*, while $(\nu a) P$ denotes *name generation*, which is also called *restriction*.

If necessary, we use parentheses to clarify the scope of the various process operators in expressions. Moreover, we impose that unary operators have precedence over (i.e., bind tighter) than binary operators.

$$\begin{aligned} (\boldsymbol{\nu}a) P \mid Q &= ((\boldsymbol{\nu}a) P) \mid Q \\ a.P + M &= (a.P) + M \\ \sigma M_1 + M_2 &= \sigma(M_1) + M_2 \end{aligned}$$

3.2 Notation We also use the abbreviation

$$\prod_{i\in I} P_i \stackrel{\text{def}}{=} P_1 \mid \ldots \mid P_n$$

where *I* is the finite indexing set $\{1..., n\}$. Note that then the order of components is not fixed.

3.3 Definition (Free Names)

The set fn(P) is defined inductively by:

$\operatorname{fn}(\mu)$	$\stackrel{\rm def}{=}$	$\begin{cases} \{b\} & \text{if } \mu = b \\ \{b\} & \text{if } \mu = \bar{b} \\ \emptyset & \text{if } \mu = \tau \end{cases}$
$\operatorname{fn}(0)$	$\stackrel{\rm def}{=}$	Ø
$\operatorname{fn}(\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$\mathrm{fn}(\mu) \cup \mathrm{fn}(P)$
$\operatorname{fn}(M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{fn}(M_1) \cup \operatorname{fn}(M_2)$
$\operatorname{fn}(A\langle \vec{a} \rangle)$	$\stackrel{\rm def}{=}$	$\{\vec{a}\}$
$\operatorname{fn}(P_1 P_2)$	$\stackrel{\rm def}{=}$	$\operatorname{fn}(P_1) \cup \operatorname{fn}(P_2)$
$\operatorname{fn}((\boldsymbol{\nu} a) P)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{fn}(P) \setminus \{ a \}$

We say that *a* occurs **free** in *P*, if it occurs without enclosing $(\nu a) [\cdot]$ in *P*.

3.4 Definition (Bound Names)

The set bn(P) is defined inductively by:

$\operatorname{bn}(\mu)$	$\stackrel{\rm def}{=}$	$\begin{cases} \emptyset & \text{if } \mu = b \\ \emptyset & \text{if } \mu = \bar{b} \\ \emptyset & \text{if } \mu = \tau \end{cases}$
$\operatorname{bn}(0)$	$\stackrel{\rm def}{=}$	Ø
$\operatorname{bn}(\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{bn}(\mu) \cup \operatorname{bn}(P)$
$\operatorname{bn}(M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{bn}(M_1) \cup \operatorname{bn}(M_2)$
$\operatorname{bn}(A\langle \vec{a} \rangle)$	$\stackrel{\text{def}}{=}$	Ø
$\operatorname{bn}(P_1 P_2)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{bn}(P_1) \cup \operatorname{bn}(P_2)$
$\operatorname{bn}((\boldsymbol{\nu} a) P)$	$\stackrel{\rm def}{=}$	$\operatorname{bn}(P) \cup \{a\}$

We say that *a* occurs **bound** in *P*,

if *P* has a subterm $(\nu a) Q$ where *a* occurs free in *Q*. We say that $(\nu a) P$ binds (any occurrence of) *a* in *P*.

- **3.5 Definition** A name *a* is called *fresh* with respect to an expression *P* if it does not occur in it, i.e., if $a \notin fn(P) \cup bn(P)$.
- **3.6 Definition** The process P' is a simple α-conversion of P if it can be obtained by replacing an instance of a subterm (*νa*) Q of P with (*νb*) Q', where Q' is obtained by replacing all occurences of a with b in Q, for some b that is fresh with respect to Q.
 The relation =_α (of type P × P), called α-congruence, is the smallest equivalence relation containing simple α-renaming.
- **3.7 Definition** Let $P \in \mathcal{P}$. We call *P* clash-free (or α -free) if $\operatorname{fn}(P) \cap \operatorname{bn}(P) = \emptyset$ and all set unions in the definition of $\operatorname{bn}(P)$ are disjoint unions (i.e., the same name is not bound twice in *P*).
- **3.8 Lemma** For every expression $P \in \mathcal{P}$, there exists a clash-free expression $\widehat{P} \in \mathcal{P}$ such that $P =_{\alpha} \widehat{P}$. In this case, we call \widehat{P} a *clash-free version* of P.

3.9 Definition (Simultaneous Substitution)

Any substitution $\sigma : \mathcal{N} \to \mathcal{N}$ is lifted to concurrent process expressions $\mathcal{P} \to \mathcal{P}$, inductively defined by:

$$\begin{array}{rcl} \sigma(\mathbf{0}) & \stackrel{\mathrm{def}}{=} & \mathbf{0} \\ \sigma(\mu.P) & \stackrel{\mathrm{def}}{=} & \sigma(\mu).\sigma(P) \\ \sigma(M_1 + M_2) & \stackrel{\mathrm{def}}{=} & \sigma(M_1) + \sigma(M_2) \\ \sigma(\mathsf{A}\langle \vec{a} \rangle) & \stackrel{\mathrm{def}}{=} & \mathsf{A}\langle \sigma(\vec{a}) \rangle \\ \sigma(P_1|P_2) & \stackrel{\mathrm{def}}{=} & \sigma(P_1) \mid \sigma(P_2) \\ \sigma((\boldsymbol{\nu}a) P) & \stackrel{\mathrm{def}}{=} & (\boldsymbol{\nu}a) \sigma(P) \end{array}$$

We say that σ avoids name-clashes on P, if $\sup(\sigma) \cap \operatorname{bn}(P) = \emptyset = \sigma(\sup(\sigma)) \cap \operatorname{bn}(P)$.

To ensure that we always avoid name-clashes when applying substitutions, we silently assume that an appropriate α -conversion is implicitly applied whenever necessary.

3.10 Definition (Operational Semantics)

The LTS $(\mathcal{P}, \mathcal{T})$ of sequential process expressions over \mathcal{A} has \mathcal{P} as states, and its transitions \mathcal{T} are precisely generated by the following rules:

$$PRE: \mu.P \xrightarrow{\mu} P$$

$$SUM_{1}: \frac{M_{1} \xrightarrow{\mu} M'_{1}}{M_{1} + M_{2} \xrightarrow{\mu} M'_{1}} \qquad SUM_{2}: \frac{M_{2} \xrightarrow{\mu} M'_{2}}{M_{1} + M_{2} \xrightarrow{\mu} M'_{2}}$$

$$DEF: \frac{\{\vec{c}/a\}M \xrightarrow{\mu} P'}{A\langle \vec{c} \rangle \xrightarrow{\mu} P'} \quad IF A(\vec{a}) \stackrel{def}{=} M$$

$$PAR_{1}: \frac{P_{1} \xrightarrow{\mu} P'_{1}}{P_{1}|P_{2} \xrightarrow{\mu} P'_{1}|P_{2}} \qquad PAR_{2}: \frac{P_{2} \xrightarrow{\mu} P'_{2}}{P_{1}|P_{2} \xrightarrow{\mu} P_{1}|P'_{2}}$$

$$COM: \frac{P \xrightarrow{\lambda} P' \quad Q \xrightarrow{\bar{\lambda}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

$$RES: \frac{P \xrightarrow{\mu} P'}{(\nu a) P \xrightarrow{\mu} (\nu a) P'} \quad IF \mu \notin \{a, \overline{a}\}$$

$$ALPHA: \frac{Q \xrightarrow{\mu} Q'}{P \xrightarrow{\mu} P'} \quad IF P=_{\alpha}Q \text{ AND } P'=_{\alpha}Q'$$

where $\overline{\overline{\lambda}} \stackrel{\text{def}}{=} \lambda$.

3.11 Proposition For each $P \in \mathcal{P}$, there is a finite index set *I*, and for all $i \in I$ there are actions β_i and processes Q_i such that

$$P \sim \sum_{i \in I} \{ \beta_i . Q_i \mid P \xrightarrow{\beta_i} Q_i \}.$$

3.12 Proposition For all $n \ge 0$ and $P_1, \ldots, P_n \in \mathcal{P}$:

$$P_{1}|\cdots|P_{n} \sim \begin{cases} \sum \left\{ \begin{array}{l} \beta.(P_{1}|\cdots|P_{i}'|\cdots|P_{n}) \\ & \mid \exists 1 \leq i \leq n: P_{i} \xrightarrow{\beta} P_{i}' \end{array} \right\} \\ + \\ \sum \left\{ \begin{array}{l} \tau.(P_{1}|\cdots|P_{i}'|\cdots|P_{j}'|\cdots|P_{n}) \\ & \mid \exists 1 \leq i < j \leq n: P_{i} \xrightarrow{\lambda} P_{i}' \land P_{j} \xrightarrow{\overline{\lambda}} P_{j}' \end{array} \right\} \end{cases}$$

3.13 Proposition For all $n \ge 0, P_1, \ldots, P_n \in \mathcal{P}$, and \vec{a} :

$$(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P_n) \sim \begin{cases} \sum \{ \beta.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P'_i|\cdots|P_n) \\ | \exists 1 \leq i \leq n : P_i \xrightarrow{\beta} P'_i \wedge \beta, \overline{\beta} \notin \vec{a} \} \\ + \\ \sum \{ \tau.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P'_i|\cdots|P'_j|\cdots|P_n) \\ | \exists 1 \leq i < j \leq n : P_i \xrightarrow{\lambda} P'_i \wedge P_j \xrightarrow{\overline{\lambda}} P'_j \} \end{cases}$$