
Concurrency Semantics
Week 4

Course Notes 2005
EPFL – I&C

Uwe Nestmann
Johannes Borgström

April 27, 2005

1

$Id: notes-4.tex,v 1.3 2005/04/25 16:16:12 uwe Exp $

3 Concurrent Processes

3.1 Definition (Concurrent Process Expressions)
The sets P and M of concurrent process expressions
is defined by the following BNF-syntax:

P ::= A〈~a 〉
∣∣ M

∣∣ P |P
∣∣ (νa)P

M ::= 0

∣∣ µ.P
∣∣ M + M

under the same assumptions on process identifiers
as in the sequential case. The expression P |P de-
notes the parallel composition, while (νa)P denotes
name generation, which is also called restriction.

If necessary, we use parentheses to clarify the scope
of the various process operators in expressions. More-
over, we impose that unary operators have prece-
dence over (i.e., bind tighter) than binary operators.

(νa)P | Q = ((νa)P) | Q
a.P + M = (a.P) + M

σM1 + M2 = σ(M1) + M2

3.2 Notation We also use the abbreviation

∏
i∈I

Pi
def
= P1 | . . . | Pn

where I is the finite indexing set {1 . . . , n}.
Note that then the order of components is not fixed.

3.3 Definition (Free Names)
The set fn(P) is defined inductively by:

fn(µ)
def
=






{b} if µ = b

{b} if µ = b̄

∅ if µ = τ

fn(0)
def
= ∅

fn(µ.P)
def
= fn(µ) ∪ fn(P)

fn(M1 + M2)
def
= fn(M1) ∪ fn(M2)

fn(A〈~a 〉)
def
= {~a}

fn(P1|P2)
def
= fn(P1) ∪ fn(P2)

fn((νa)P)
def
= fn(P) \ { a }

We say that a occurs free in P ,
if it occurs without enclosing (νa) [·] in P .

2

3.4 Definition (Bound Names)
The set bn(P) is defined inductively by:

bn(µ)
def
=






∅ if µ = b

∅ if µ = b̄

∅ if µ = τ

bn(0)
def
= ∅

bn(µ.P)
def
= bn(µ) ∪ bn(P)

bn(M1 + M2)
def
= bn(M1) ∪ bn(M2)

bn(A〈~a 〉)
def
= ∅

bn(P1|P2)
def
= bn(P1) ∪ bn(P2)

bn((νa)P)
def
= bn(P) ∪ { a }

We say that a occurs bound in P ,
if P has a subterm (νa)Q where a occurs free in Q.
We say that (νa)P binds (any occurrence of) a in P .

3.5 Definition A name a is called fresh with respect to
an expression P if it does not occur in it,
i.e., if a 6∈ fn(P) ∪ bn(P).

3.6 Definition The process P ′ is a simple α-conversion of
P if it can be obtained by replacing an instance of
a subterm (νa)Q of P with (νb)Q′, where Q′ is ob-
tained by replacing all occurences of a with b in Q,
for some b that is fresh with respect to Q.
The relation =α (of type P ×P), called α-congruence,
is the smallest equivalence relation containing sim-
ple α-renaming.

3.7 Definition Let P ∈ P . We call P clash-free (or α-
free) if fn(P) ∩ bn(P) = ∅ and all set unions in the
definition of bn(P) are disjoint unions (i.e., the same
name is not bound twice in P).

3.8 Lemma For every expression P ∈ P , there exists a

clash-free expression P̂ ∈ P such that P =α P̂ .

In this case, we call P̂ a clash-free version of P .

3

3.9 Definition (Simultaneous Substitution)
Any substitution σ : N → N is lifted to concurrent
process expressions P → P , inductively defined by:

σ(0)
def
= 0

σ(µ.P)
def
= σ(µ).σ(P)

σ(M1 + M2)
def
= σ(M1) + σ(M2)

σ(A〈~a 〉)
def
= A〈σ(~a) 〉

σ(P1|P2)
def
= σ(P1) | σ(P2)

σ((νa)P)
def
= (νa)σ(P)

We say that σ avoids name-clashes on P , if
sup(σ) ∩ bn(P) = ∅ = σ(sup(σ)) ∩ bn(P).

To ensure that we always avoid name-clashes when
applying substitutions, we silently assume that an
appropriate α-conversion is implicitly applied when-
ever necessary.

3.10 Definition (Operational Semantics)
The LTS (P, T) of sequential process expressions over
A has P as states, and its transitions T are precisely
generated by the following rules:

PRE: µ.P
µ
−−→ P

SUM1 :
M1

µ
−−→ M ′

1

M1+M2

µ
−−→ M ′

1

SUM2 :
M2

µ
−−→ M ′

2

M1+M2

µ
−−→ M ′

2

DEF:
{~c/~a}M

µ
−−→ P ′

A〈~c 〉
µ
−−→ P ′

IF A(~a)
def
= M

PAR1 :
P1

µ
−−→ P ′

1

P1|P2

µ
−−→ P ′

1|P2

PAR2 :
P2

µ
−−→ P ′

2

P1|P2

µ
−−→ P1|P

′

2

COM:
P

λ
−−→ P ′ Q

λ
−−→ Q′

P |Q
τ

−−→ P ′|Q′

RES:
P

µ
−−→ P ′

(νa)P
µ
−−→ (νa)P ′

IF µ 6∈{a, a}

ALPHA:
Q

µ
−−→ Q′

P
µ
−−→ P ′

IF P=αQ AND P ′=αQ′

where λ
def
= λ.

4

3.11 Proposition For each P ∈ P , there is a finite index
set I , and for all i ∈ I there are actions βi and pro-
cesses Qi such that

P ∼
∑

i∈I

{ βi.Qi | P
βi

−−−→ Qi }.

3.12 Proposition For all n ≥ 0 and P1, . . . , Pn ∈ P :

P1| · · · |Pn ∼






∑
{ β.(P1| · · · |P

′

i | · · · |Pn)

| ∃1≤i≤n : Pi

β
−−→ P ′

i }

+
∑

{ τ.(P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn)

| ∃1≤i<j≤n : Pi

λ
−−→ P ′

i ∧ Pj

λ
−−→ P ′

j }

3.13 Proposition For all n ≥ 0, P1, . . . , Pn ∈ P , and ~a:

(ν~a) (P1| · · · |Pn) ∼






∑
{ β.(ν~a) (P1| · · · |P

′

i | · · · |Pn)

| ∃1≤i≤n : Pi

β
−−→ P ′

i ∧ β, β 6∈ ~a }

+
∑

{ τ.(ν~a) (P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn)

| ∃1≤i<j≤n : Pi

λ
−−→ P ′

i ∧ Pj

λ
−−→ P ′

j }

5

