Concurrency Semantics
Week 4

Course Notes 2005
EPFL - 1&C

Uwe Nestmann
Johannes Borgstrom

April 27, 2005

3.1

3.2

3.3

$ld: notes-4.tex,v 1.3 2005/04/25 16:16:12 uwe Exp $

3 Concurrent Processes

Definition (Concurrent Process Expressions)
The sets P and M of concurrent process expressions
is defined by the following BNF-syntax:

P == Al@)| M| PP | (va)P
M u= 0| pP|M+M

under the same assumptions on process identifiers
as in the sequential case. The expression P|P de-
notes the parallel composition, while (va) P denotes
name generation, which is also called restriction.

If necessary, we use parentheses to clarify the scope
of the various process operators in expressions. More-
over, we impose that unary operators have prece-
dence over (i.e., bind tighter) than binary operators.

(va)P|Q = ((va)P)|Q
aP+M = (a.P)+M
O'M1—|—M2 = U(M1)+M2

Notation We also use the abbreviation

def

[P = P...| R
iel
where I is the finite indexing set {1...,n}.

Note that then the order of components is not fixed.

Definition (Free Names)
The set fn(P) is defined inductively by:

(b} ifp=1b
() Ly ifu=b
0 ifu=r
fn(0) L)
fn(p. P) C fn(p) Utn(P)
(M + M) Y (M) U (M)
f(A(a)) < (@
fn(Py|Ps) C (P U n(P)
fn((va) P) = f(P)\{a}

We say that a occurs free in P,
if it occurs without enclosing (va) [-] in P.

3.4

3.5

3.6

3.7

3.8

Definition (Bound Names)
The set bn(P) is defined inductively by:
0 ifu=0>
bn(p) e 0 ifu=">
0 ifp=r
bn(0) L)
bn(u.P) def bn(u) Ubn(P)
bu(M; + M) < bn(My) Ubn(My)
b(A(@)) Lo
bu(Py|Ps) C pn(Py) Ubn(Py)
bn((va)P) ¥ baP)u{a}

We say that a occurs bound in P,
if P has a subterm (rva) @ where a occurs free in Q.
We say that (va) P binds (any occurrence of) a in P.

Definition A name q is called fresh with respect to
an expression P if it does not occur in it,
ie,ifa & fn(P) Ubn(P).

Definition The process P’ is a simple a-conversion of
P if it can be obtained by replacing an instance of
a subterm (va) Q of P with (vb) Q’, where Q' is ob-
tained by replacing all occurences of ¢ with b in @,
for some b that is fresh with respect to Q.

The relation =, (of type P x P), called a-congruence,
is the smallest equivalence relation containing sim-
ple a-renaming.

Definition Let P € P. We call P clash-free (or -
free) if fn(P) N bn(P) = @ and all set unions in the
definition of bn(P) are disjoint unions (i.e., the same
name is not bound twice in P).

Lemma For every expression P € P, there exists a
clash-free expression P € P such that P =, P.
In this case, we call P a clash-free version of P.

3.9 Definition (Simultaneous Substitution)
Any substitution o : N' — N is lifted to concurrent
process expressions P — P, inductively defined by:

c0) ¥ o
o(nP) = o(p).o(P)

o (M + Ms) j:f o(My) + o(Ms)
o(A(@) € Alo(@)
o(PIIP) € o(P)|o(P)
o((wa)P) ¥ (va)o(P)

We say that o avoids name-clashes on P, if
sup(o) Nbn(P) = 0 = o(sup(o)) N bu(P).

To ensure that we always avoid name-clashes when

applying substitutions, we silently assume that an

appropriate a-conversion is implicitly applied when-
ever necessary.

3.10 Definition (Operational Semantics)
The LTS (P, T) of sequential process expressions over
A has P as states, and its transitions 7 are precisely
generated by the following rules:

PRE: ;. P Mop

M, 5 M) M, 25 My
SUM1: m SUMa3: m
Mi+My — M{ Mi+My — MQ/
{2 P/
DEF: a—u IFA(Q@) ©f M
A(c) — P’
p 4P P, 5P
PARj: ——————— PAR2: m
Pl‘PQ i P1/|P2 P1|P2 — P1|P2/

PP QX

com =
PlQ — P'|Q

5 p
RES: m IF p¢{a,a}
(va) P — (va) P’

H /
—
ALPHA: u IF P=,Q AND P'=,Q’
P —P

where A %\

3.11 Proposition For each P € P, there is a finite index
set I, and for all i € I there are actions 3; and pro-
cesses ; such that

PNZ{@QHPiQi}'

il

3.12 Proposition Foralln >0and Py,...,P, € P:

XA B(a P P
| 3l<i<n:P, L P}

Pl |Py~{ +

XA (Pl P P [P)

A X
| 31<i<j<n:P > P/AP; =5 Pl }

3.13 Proposition Foralln >0, P1,...,P, € P,and a:

A Bwa) (Pl |P/|-|Py)

| Si<i<n: P, L P ABB¢a }
(wa)(Pl [Py)~ q+
1A mwa) (A B [P [P)

| 31<i<j<n: P, —> P AP, 25 P}

