Concurrency Semantics Week 4

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
April 27, 2005

3 Concurrent Processes

3.1 Definition (Concurrent Process Expressions)

The sets \mathcal{P} and \mathcal{M} of concurrent process expressions is defined by the following BNF-syntax:

$$
\begin{aligned}
P & ::=\mathrm{A}\langle\vec{a}\rangle|M| P|P|(\boldsymbol{\nu} a) P \\
M & ::=\mathbf{0}|\mu \cdot P| M+M
\end{aligned}
$$

under the same assumptions on process identifiers as in the sequential case. The expression $P \mid P$ denotes the parallel composition, while $(\boldsymbol{\nu} a) P$ denotes name generation, which is also called restriction.

If necessary, we use parentheses to clarify the scope of the various process operators in expressions. Moreover, we impose that unary operators have precedence over (i.e., bind tighter) than binary operators.

$$
\begin{aligned}
(\boldsymbol{\nu} a) P \mid Q & =((\boldsymbol{\nu} a) P) \mid Q \\
a . P+M & =(a . P)+M \\
\sigma M_{1}+M_{2} & =\sigma\left(M_{1}\right)+M_{2}
\end{aligned}
$$

3.2 Notation We also use the abbreviation

$$
\prod_{i \in I} P_{i} \stackrel{\text { def }}{=} P_{1}|\ldots| P_{n}
$$

where I is the finite indexing set $\{1 \ldots, n\}$.
Note that then the order of components is not fixed.

3.3 Definition (Free Names)

The set $\mathrm{fn}(P)$ is defined inductively by:

$\operatorname{fn}(\mu)$	$\stackrel{\text { def }}{=}$	$\begin{cases}\{b\} & \text { if } \mu=b \\ \{b\} & \text { if } \mu=\bar{b} \\ \emptyset & \text { if } \mu=\tau\end{cases}$
$\operatorname{fn}(\mathbf{0})$	$\stackrel{\text { def }}{=}$	\emptyset
$\operatorname{fn}(\mu \cdot P)$	$\stackrel{\text { def }}{=}$	$\operatorname{fn}(\mu) \cup \operatorname{fn}(P)$
$\operatorname{fn}\left(M_{1}+M_{2}\right)$	$\stackrel{\text { def }}{=}$	$\operatorname{fn}\left(M_{1}\right) \cup \operatorname{fn}\left(M_{2}\right)$
$\operatorname{fn}(\mathrm{A}\langle\vec{a}\rangle)$	$\stackrel{\text { def }}{=}$	$\{\vec{a}\}$
$\operatorname{fn}\left(P_{1} \mid P_{2}\right)$	$\stackrel{\text { def }}{=}$	$\operatorname{fn}\left(P_{1}\right) \cup \operatorname{fn}\left(P_{2}\right)$
$\operatorname{fn}((\boldsymbol{\nu} a) P)$	$\stackrel{\text { def }}{=}$	$\operatorname{fn}(P) \backslash\{a\}$

We say that a occurs free in P, if it occurs without enclosing $(\boldsymbol{\nu} a)[\cdot]$ in P.

3.4 Definition (Bound Names)

The set $\mathrm{bn}(P)$ is defined inductively by:

$\mathrm{bn}(\mu)$	$\stackrel{\text { def }}{=}$	$\begin{cases}\emptyset & \text { if } \mu=b \\ \emptyset & \text { if } \mu=\bar{b} \\ \emptyset & \text { if } \mu=\tau\end{cases}$
$\mathrm{bn}(\mathbf{0})$	$\stackrel{\text { def }}{=}$	\emptyset
$\mathrm{bn}(\mu \cdot P)$	$\stackrel{\text { def }}{=}$	$\mathrm{bn}(\mu) \cup \mathrm{bn}(P)$
$\mathrm{bn}\left(M_{1}+M_{2}\right)$	$\stackrel{\text { def }}{=}$	$\mathrm{bn}\left(M_{1}\right) \cup \mathrm{bn}\left(M_{2}\right)$
$\mathrm{bn}(\mathrm{A}\langle\vec{a}\rangle)$	$\stackrel{\text { def }}{=}$	\emptyset
$\mathrm{bn}\left(P_{1} \mid P_{2}\right)$	$\stackrel{\text { def }}{=}$	$\mathrm{bn}\left(P_{1}\right) \cup \mathrm{bn}\left(P_{2}\right)$
$\mathrm{bn}((\boldsymbol{\nu} a) P)$	$\stackrel{\text { def }}{=}$	$\mathrm{bn}(P) \cup\{a\}$

We say that a occurs bound in P,
if P has a subterm $(\boldsymbol{\nu} a) Q$ where a occurs free in Q.
We say that ($\boldsymbol{\nu} a) P$ binds (any occurrence of) a in P.
3.5 Definition A name a is called fresh with respect to an expression P if it does not occur in it, i.e., if $a \notin \mathrm{fn}(P) \cup \mathrm{bn}(P)$.
3.6 Definition The process P^{\prime} is a simple α-conversion of P if it can be obtained by replacing an instance of a subterm $(\boldsymbol{\nu} a) Q$ of P with $(\boldsymbol{\nu} b) Q^{\prime}$, where Q^{\prime} is obtained by replacing all occurences of a with b in Q, for some b that is fresh with respect to Q.
The relation $={ }_{\alpha}$ (of type $\mathcal{P} \times \mathcal{P}$), called α-congruence, is the smallest equivalence relation containing simple α-renaming.
3.7 Definition Let $P \in \mathcal{P}$. We call P clash-free (or $\alpha-$ free) if $\operatorname{fn}(P) \cap \operatorname{bn}(P)=\emptyset$ and all set unions in the definition of $\mathrm{bn}(P)$ are disjoint unions (i.e., the same name is not bound twice in P).
3.8 Lemma For every expression $P \in \mathcal{P}$, there exists a clash-free expression $\widehat{P} \in \mathcal{P}$ such that $P={ }_{\alpha} \widehat{P}$. In this case, we call \widehat{P} a clash-free version of P.

3.9 Definition (Simultaneous Substitution)

Any substitution $\sigma: \mathcal{N} \rightarrow \mathcal{N}$ is lifted to concurrent process expressions $\mathcal{P} \rightarrow \mathcal{P}$, inductively defined by:

$$
\begin{aligned}
& \sigma(\mathbf{0}) \stackrel{\text { def }}{=} \\
& 0 \\
& \sigma(\mu \cdot P) \stackrel{\text { def }}{=} \sigma(\mu) \cdot \sigma(P) \\
& \sigma\left(M_{1}+M_{2}\right) \stackrel{\text { def }}{=} \sigma\left(M_{1}\right)+\sigma\left(M_{2}\right) \\
& \sigma(\mathrm{A}\langle\vec{a}\rangle) \stackrel{\text { def }}{=} \mathrm{A}\langle\sigma(\vec{a})\rangle \\
& \sigma\left(P_{1} \mid P_{2}\right) \stackrel{\text { def }}{=} \sigma\left(P_{1}\right) \mid \sigma\left(P_{2}\right) \\
& \sigma((\boldsymbol{\nu} a) P) \stackrel{\text { def }}{=}(\boldsymbol{\nu} a) \sigma(P)
\end{aligned}
$$

We say that σ avoids name-clashes on P, if $\sup (\sigma) \cap \operatorname{bn}(P)=\emptyset=\sigma(\sup (\sigma)) \cap \operatorname{bn}(P)$.

To ensure that we always avoid name-clashes when applying substitutions, we silently assume that an appropriate α-conversion is implicitly applied whenever necessary.

3.10 Definition (Operational Semantics)

The LTS $(\mathcal{P}, \mathcal{T})$ of sequential process expressions over \mathcal{A} has \mathcal{P} as states, and its transitions \mathcal{T} are precisely generated by the following rules:

$$
\begin{aligned}
& \text { PRE: } \mu . P \xrightarrow{\mu} P \\
& \operatorname{SUM}_{1}: \frac{M_{1} \xrightarrow{\mu} M_{1}^{\prime}}{M_{1}+M_{2} \xrightarrow{\mu} M_{1}^{\prime}} \quad \operatorname{SUM}_{2}: \frac{M_{2} \xrightarrow{\mu} M_{2}^{\prime}}{M_{1}+M_{2} \xrightarrow{\mu} M_{2}^{\prime}} \\
& \text { DEF: } \frac{\{\vec{c} / \vec{a}\} M \xrightarrow{\mu} P^{\prime}}{\mathrm{A}\langle\vec{c}\rangle \xrightarrow{\mu} P^{\prime}} \text { IF A }(\vec{a}) \stackrel{\text { def }}{=} M \\
& \mathrm{PAR}_{1}: \frac{P_{1} \xrightarrow{\mu} P_{1}^{\prime}}{P_{1}\left|P_{2} \xrightarrow{\mu} P_{1}^{\prime}\right| P_{2}} \quad \mathrm{PAR}_{2}: \frac{P_{2} \xrightarrow{\mu} P_{2}^{\prime}}{P_{1}\left|P_{2} \xrightarrow{\mu} P_{1}\right| P_{2}^{\prime}} \\
& \mathrm{com}: \frac{P \xrightarrow{\lambda} P^{\prime} \quad Q \xrightarrow{\bar{\lambda}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \\
& \text { RES: } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} a) P \xrightarrow{\mu}(\boldsymbol{\nu} a) P^{\prime}} \text { IF } \mu \notin\{a, \bar{a}\} \\
& \text { ALPHA: } \frac{Q \xrightarrow{\mu} Q^{\prime}}{P \xrightarrow{\mu} P^{\prime}} \text { IF } P={ }_{\alpha} Q \text { AND } P^{\prime}={ }_{\alpha} Q^{\prime}
\end{aligned}
$$

where $\overline{\bar{\lambda}} \stackrel{\text { def }}{=} \lambda$.
3.11 Proposition For each $P \in \mathcal{P}$, there is a finite index set I, and for all $i \in I$ there are actions β_{i} and processes Q_{i} such that

$$
P \sim \sum_{i \in I}\left\{\beta_{i} \cdot Q_{i} \mid P \xrightarrow{\beta_{i}} Q_{i}\right\} .
$$

3.12 Proposition For all $n \geq 0$ and $P_{1}, \ldots, P_{n} \in \mathcal{P}$:

$$
P_{1}|\cdots| P_{n} \sim\left\{\begin{array}{c}
\sum\left\{\beta \cdot\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{n}\right)\right. \\
\left.\mid \exists 1 \leq i \leq n: P_{i} \xrightarrow{\beta} P_{i}^{\prime}\right\} \\
\sum \begin{array}{l}
\mid \\
\sum .\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{j}^{\prime}|\cdots| P_{n}\right) \\
\\
\left.\mid \exists 1 \leq i<j \leq n: P_{i} \xrightarrow{\lambda} P_{i}^{\prime} \wedge P_{j} \xrightarrow{\bar{\lambda}} P_{j}^{\prime}\right\}
\end{array}
\end{array}\right.
$$

3.13 Proposition For all $n \geq 0, P_{1}, \ldots, P_{n} \in \mathcal{P}$, and \vec{a} :

$$
(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{n}\right) \sim\left\{\begin{array}{c}
\sum\left\{\beta \cdot(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{n}\right)\right. \\
\left.\quad \mid \exists 1 \leq i \leq n: P_{i} \xrightarrow{\beta} P_{i}^{\prime} \wedge \beta, \bar{\beta} \notin \vec{a}\right\} \\
\sum\left\{\begin{array}{r}
\\
\sum(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{j}^{\prime}|\cdots| P_{n}\right) \\
\\
\left.\mid \exists 1 \leq i<j \leq n: P_{i} \xrightarrow{\lambda} P_{i}^{\prime} \wedge P_{j} \xrightarrow{\bar{\lambda}} P_{j}^{\prime}\right\}
\end{array}\right.
\end{array}\right.
$$

