Concurrency Semantics Week 3

Course Notes 2005 EPFL – I&C

Uwe Nestmann Johannes Borgström

April 27, 2005

\$Id: notes-3.tex,v 1.8 2005/04/25 16:16:12 uwe Exp \$

1 Simulation & Bisimulation

1.1 Definition (Labeled Transition System / LTS)

Let \mathcal{A} be an *action alphabet*.

An *LTS* over \mathcal{A} is a pair $(\mathcal{Q}, \mathcal{T})$ with

- a set of states $Q = \{q_0, q_1 \dots\}$
- a ternary *transition relation* $\mathcal{T} \subseteq (\mathcal{Q} \times \mathcal{A} \times \mathcal{Q})$

A transition $(q, \mu, q') \in \mathcal{T}$ is also written $q \xrightarrow{\mu}_{\mathcal{T}} q'$. If $q \xrightarrow{\mu_1}_{\mathcal{T}} q_1 \cdots \xrightarrow{\mu_n}_{\mathcal{T}} q_n$ we call q_n a *derivative* of q.

Usually we omit the subscript T of arrows.

1.2 Definition ((Strong) Simulation)

Let (Q, T) be a LTS.

- Let S be a binary relation (on Q). S is a (strong) simulation on (Q, T) if, whenever p S q, if p → p' (for some p' ∈ Q) then there is q' ∈ Q such that q → q' and p' S q'.
- 2. *q* (*strongly*) *simulates p*, written $p \leq q$, if there is a (strong) simulation *S* (on (Q, T)) such that $p \leq q$.

The relation \leq is sometimes called *similarity*.

In the following, if the underlying transition system is clear in the respective reasoning context, then we usually omit to specify "on Q" (for binary relations) or "on (Q, T)" (for simulations).

1.3 Lemma Let (Q, T) be a LTS.

If S_1 and S_2 are simulations, then

- 1. $S_1 \cup S_2$ is also a simulation.
- 2. S_1S_2 is also a simulation.

Note that $S_1 \cap S_2$ is not necessarily a simulation.

1.4 Proposition Let (Q, T) be a LTS.

1. $\leq = \bigcup \{ S \mid S \text{ is simulation on } (Q, T) \}$

- 2. \leq is the largest simulation on $(\mathcal{Q}, \mathcal{T})$.
- 3. (\mathcal{Q}, \preceq) is a preorder.

1.5 Definition (Mutual Simulation)

Let (Q, T) be a LTS. Let $p, q \in Q$. p and q are *mutually similar*, written $p \ge q$, if there is a pair (S_1, S_2) of simulations S_1 and S_2 with $p S_1 q S_2 p$ (i.e., with $p S_1 q$ and $q S_2 p$).

1.6 Proposition \geq is an equivalence relation.

1.7 Definition ((Strong) Bisimulation)

Let (Q, T) be a LTS. A binary relation *B* on *Q* is *a* (*strong*) *bisimulation* on (Q, T)if both *B* and B^{-1} are (strong) simulations. *p* and *q* are (*strongly*) *bisimilar*, written $p \sim q$, if there is a (strong) bisimulation *B* such that *p B q*.

1.8 Proposition

1. $\sim = \bigcup \{ S \mid S \text{ is (strong) bisimulation on } (Q, T) \}$

- 2. ~ is the largest bisimulation on (Q, T).
- 3. \sim is an equivalence relation.

2 Sequential Processes

2.1 Notation We use the following sets of entities with corresponding meta-variables:

\mathcal{I}	process identifiers	$A, B \dots$
\mathcal{N}	names	$a, b, c \dots$
\mathcal{N}	co-names	$\overline{a}, \overline{b}, \overline{c} \dots$
\mathcal{L}	labels	$\lambda \ldots \in \mathcal{L} := \mathcal{N} \cup \overline{\mathcal{N}}$
\mathcal{A}	actions	$\mu, \beta \ldots \in \mathcal{L} \cup \{\tau\}$

Labels are often also called *visible/external* actions. In contrast, τ is called *invisible/internal* action. We use \vec{a} to denote *finite sequences* $a_1 \dots, a_n$ of *names*. We will use *parameterized processes* $A\langle \vec{a} \rangle$ with *name* parameters (neither *co*-names, nor labels, ...)

2.2 Definition (Sequential Process Expressions)

The sets \mathcal{P}^{seq} and \mathcal{M}^{seq} of sequential process expressions is defined by the following BNF-syntax:

$$P ::= A\langle \vec{a} \rangle \mid M$$
$$M ::= \mathbf{0} \mid \mu . P \mid M + M$$

We use $P, P_i \dots$ to denote process expressions, while $M, M_i \dots$ always denote choices or summations. Each process identifier *A* is assumed to have a *defining equation* (note the brackets)

$$\mathsf{A}(\vec{a}) \stackrel{\text{def}}{=} M$$

where *M* is a summation, and \vec{a} includes fn(*M*), which denotes the set of (*free*) names of *P* (see Definition 2.3). Then, $A\langle \vec{b} \rangle$ is supposed to mean the same as $\{\vec{b}/\vec{a}\}M$, which is defined as simultaneous substitution of all occurrences of \vec{a} by \vec{b} (see Definition 2.4).

Note that \vec{a} does only include *names* ($\in N$), not conames, and neither τ .

2.3 Definition ((Free) Names) fn : $\mathcal{P}^{seq} \to \mathcal{P}(\mathcal{N})$ The set fn(*P*) is defined inductively by:

${ m fn}(\mu)$	$\stackrel{\rm def}{=}$	$\begin{cases} \{b\} & \text{if } \mu = b \\ \{b\} & \text{if } \mu = \bar{b} \\ \emptyset & \text{if } \mu = \tau \end{cases}$
$\operatorname{fn}(0)$	$\stackrel{\rm def}{=}$	Ø
$\operatorname{fn}(\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$\mathrm{fn}(\mu) \cup \mathrm{fn}(P)$
$\operatorname{fn}(M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{fn}(M_1) \cup \operatorname{fn}(M_2)$
$\operatorname{fn}(A\langle \vec{a} \rangle)$	$\stackrel{\mathrm{def}}{=}$	$\{\vec{a}\}$

2.4 Definition (Simultaneous Substitution)

A substitution σ is a total function $\sigma : \mathcal{N} \to \mathcal{N}$. The set $\sup(\sigma) \stackrel{\text{def}}{=} \{ n \in \mathcal{N} \mid \sigma(n) \neq n \}$ denotes the *support* of σ .

1. For $k \in \mathcal{N}$, we lift σ to $\mathcal{N}^k \to \mathcal{N}^k$ to act on vectors of names by

dof

$$\sigma((n_1,\ldots,n_k)) \stackrel{\text{def}}{=} ((\sigma(n_1),\ldots,\sigma(n_k)))$$

2. We lift σ to actions $\mathcal{A} \to \mathcal{A}$, as defined by:

$$\sigma(\mu) \stackrel{\text{def}}{=} \begin{cases} a' & \text{if } \mu = a \in \mathcal{N} \text{ and } \sigma(a) = a' \\ \overline{\sigma(a)} & \text{if } \mu = \overline{a} \\ \tau & \text{if } \mu = \tau \end{cases}$$

3. We lift σ to processes $\mathcal{P}^{seq} \to \mathcal{P}^{seq}$, as inductively defined by:

$$\begin{array}{ccc} \sigma(\mathbf{0}) & \stackrel{\text{def}}{=} & \mathbf{0} \\ \sigma(\mu.P) & \stackrel{\text{def}}{=} & \sigma(\mu).\sigma(P) \\ \sigma(M_1 + M_2) & \stackrel{\text{def}}{=} & \sigma(M_1) + \sigma(M_2) \\ \sigma(\mathsf{A}\langle \vec{a} \rangle) & \stackrel{\text{def}}{=} & \mathsf{A}\langle \sigma(\vec{a}) \rangle \end{array}$$

2.5 Notation Let $\sigma : \mathcal{N} \to \mathcal{N}$ be a substitution with finite support. Then, we often represent σ more concretely as $\{\sigma^{(\vec{n})}/_{\vec{n}}\}$, where \vec{n} denote an arbitrary vector enumerating the elements of $\sup(\sigma)$. Dually, given any vectors \vec{a} and \vec{b} of equal length, then $\{\vec{a}/_{\vec{b}}\}$ uniquely defines a substitution.

2.6 Definition (Operational Semantics)

The LTS ($\mathcal{P}^{\text{seq}}, \mathcal{T}$) of sequential process expressions over \mathcal{A} has \mathcal{P}^{seq} as states, and its transitions \mathcal{T} are precisely generated by the following rules:

PRE:
$$\mu.P \xrightarrow{\mu} P$$

SUM₁: $\frac{M_1 \xrightarrow{\mu} M'_1}{M_1 + M_2 \xrightarrow{\mu} M'_1}$ SUM₂: $\frac{M_2 \xrightarrow{\mu} M'_2}{M_1 + M_2 \xrightarrow{\mu} M'_2}$
DEF: $\frac{\{\vec{c}/\vec{a}\}M \xrightarrow{\mu} P'}{\mathsf{A}\langle \vec{c} \rangle \xrightarrow{\mu} P'}$ IF $\mathsf{A}(\vec{a}) \stackrel{\text{def}}{=} M$

Note that "transition under prefix" is not allowed.

2.7 Notation We also use the abbreviation

$$\sum_{i\in I}\mu_i.P_i:=\mu_1.P_1+\ldots+\mu_n.P_n$$

where *I* is the finite indexing set $\{1..., n\}$. Note that then the order of summands is not fixed.