Concurrency Semantics Week 3

Course Notes 2005
EPFL - I\&C

Uwe Nestmann
Johannes Borgström
April 27, 2005

1 Simulation \& Bisimulation

1.1 Definition (Labeled Transition System / LTS)

Let \mathcal{A} be an action alphabet.
An LTS over \mathcal{A} is a pair $(\mathcal{Q}, \mathcal{T})$ with

- a set of states $\mathcal{Q}=\left\{q_{0}, q_{1} \ldots\right\}$
- a ternary transition relation $\mathcal{T} \subseteq(\mathcal{Q} \times \mathcal{A} \times \mathcal{Q})$

A transition $\left(q, \mu, q^{\prime}\right) \in \mathcal{T}$ is also written $q \xrightarrow{\mu} \mathcal{T} q^{\prime}$.
If $q \xrightarrow{\mu_{1}} \mathcal{T} q_{1} \cdots \xrightarrow{\mu_{n}} \mathcal{T} q_{n}$ we call q_{n} a derivative of q.
Usually we omit the subscript \mathcal{T} of arrows.

1.2 Definition ((Strong) Simulation)

Let $(\mathcal{Q}, \mathcal{T})$ be a LTS.

1. Let S be a binary relation (on \mathcal{Q}).
S is a (strong) simulation on $(\mathcal{Q}, \mathcal{T})$ if, whenever $p S$,
if $p \xrightarrow{\mu} p^{\prime}$ (for some $p^{\prime} \in \mathcal{Q}$) then there is $q^{\prime} \in \mathcal{Q}$ such that $q \xrightarrow{\mu} q^{\prime}$ and $p^{\prime} S q^{\prime}$.
2. q (strongly) simulates p, written $p \preceq q$, if there is a (strong) simulation S (on $(\mathcal{Q}, \mathcal{T})$) such that $p S q$.

The relation \preceq is sometimes called similarity.
In the following, if the underlying transition system is clear in the respective reasoning context, then we usually omit to specify "on $\mathcal{Q}^{\text {" (for binary relations) }}$ or "on $(\mathcal{Q}, \mathcal{T})$ " (for simulations).
1.3 Lemma Let $(\mathcal{Q}, \mathcal{T})$ be a LTS.

If S_{1} and S_{2} are simulations, then

1. $S_{1} \cup S_{2}$ is also a simulation.
2. $S_{1} S_{2}$ is also a simulation.

Note that $S_{1} \cap S_{2}$ is not necessarily a simulation.
1.4 Proposition Let $(\mathcal{Q}, \mathcal{T})$ be a LTS.

1. $\preceq=\bigcup\{S \mid S$ is simulation on $(\mathcal{Q}, \mathcal{T})\}$
2. \preceq is the largest simulation on $(\mathcal{Q}, \mathcal{T})$.
3. (\mathcal{Q}, \preceq) is a preorder.

1.5 Definition (Mutual Simulation)

Let $(\mathcal{Q}, \mathcal{T})$ be a LTS. Let $p, q \in \mathcal{Q}$.
p and q are mutually similar, written $p \gtrless q$,
if there is a pair $\left(S_{1}, S_{2}\right)$ of simulations S_{1} and S_{2}
with $p S_{1} q S_{2} p$ (i.e., with $p S_{1} q$ and $q S_{2} p$).
1.6 Proposition \gtrless is an equivalence relation.

1.7 Definition ((Strong) Bisimulation)

Let $(\mathcal{Q}, \mathcal{T})$ be a LTS.
A binary relation B on \mathcal{Q} is
a (strong) bisimulation on (\mathcal{Q}, \mathcal{T})
if both B and B^{-1} are (strong) simulations.
p and q are (strongly) bisimilar, written $p \sim q$,
if there is a (strong) bisimulation B such that $p B q$.

1.8 Proposition

1. $\sim=\bigcup\{S \mid S$ is (strong) bisimulation on $(\mathcal{Q}, \mathcal{T})\}$
2. \sim is the largest bisimulation on $(\mathcal{Q}, \mathcal{T})$.
3. \sim is an equivalence relation.

2 Sequential Processes

2.1 Notation We use the following sets of entities with corresponding meta-variables:

\mathcal{I}	process identifiers	$A, B \ldots$
\mathcal{N}	names	$a, b, c \ldots$
$\overline{\mathcal{N}}$	co-names	$\bar{a}, \bar{b}, \bar{c} \ldots$
\mathcal{L}	labels	$\lambda \ldots \in \mathcal{L}:=\mathcal{N} \cup \overline{\mathcal{N}}$
\mathcal{A}	actions	$\mu, \beta \ldots \in \mathcal{L} \cup\{\tau\}$

Labels are often also called visible/external actions.
In contrast, τ is called invisible/internal action.
We use \vec{a} to denote finite sequences $a_{1} \ldots, a_{n}$ of names.
We will use parameterized processes $\mathrm{A}\langle\vec{a}\rangle$ with name parameters (neither co-names, nor labels, ...)

2.2 Definition (Sequential Process Expressions)

The sets $\mathcal{P}^{\text {seq }}$ and $\mathcal{M}^{\text {seq }}$ of sequential process expressions is defined by the following BNF-syntax:

$$
\begin{aligned}
P & ::=\mathrm{A}\langle\vec{a}\rangle \mid M \\
M & ::=\mathbf{0}|\mu . P| M+M
\end{aligned}
$$

We use $P, P_{i} \ldots$ to denote process expressions, while $M, M_{i} \ldots$ always denote choices or summations.

Each process identifier A is assumed to have a defining equation (note the brackets)

$$
\mathrm{A}(\vec{a}) \stackrel{\text { def }}{=} M
$$

where M is a summation, and \vec{a} includes $\mathrm{fn}(M)$, which denotes the set of (free) names of P (see Definition 2.3). Then, $\mathrm{A}\langle\vec{b}\rangle$ is supposed to mean the same as $\{\vec{b} / \vec{a}\} M$, which is defined as simultaneous substitution of all occurrences of \vec{a} by \vec{b} (see Definition 2.4).

Note that \vec{a} does only include names $(\in \mathcal{N})$, not conames, and neither τ.
2.3 Definition ((Free) Names) fn : $\mathcal{P}^{\text {seq }} \rightarrow \mathcal{P}(\mathcal{N})$ The set $\mathrm{fn}(P)$ is defined inductively by:

$\operatorname{fn}(\mu)$	$\stackrel{\text { def }}{=} \begin{cases}\{b\} & \text { if } \mu=b \\ \{b\} & \text { if } \mu=\bar{b} \\ \emptyset & \text { if } \mu=\tau\end{cases}$
$\operatorname{fn}(\mathbf{0})$	$\stackrel{\text { def }}{=} \emptyset$
$\operatorname{fn}(\mu \cdot P)$	$\stackrel{\text { def }}{=} \operatorname{fn}(\mu) \cup \mathrm{fn}(P)$
$\operatorname{fn}\left(M_{1}+M_{2}\right)$	$\stackrel{\text { def }}{=} \operatorname{fn}\left(M_{1}\right) \cup \mathrm{fn}\left(M_{2}\right)$
$\mathrm{fn}(\mathrm{A}\langle\vec{a}\rangle)$	$\stackrel{\text { def }}{=}\{\vec{a}\}$

2.4 Definition (Simultaneous Substitution)

A substitution σ is a total function $\sigma: \mathcal{N} \rightarrow \mathcal{N}$.
The set $\sup (\sigma) \stackrel{\text { def }}{=}\{n \in \mathcal{N} \mid \sigma(n) \neq n\}$
denotes the support of σ.

1. For $k \in \mathcal{N}$, we lift σ to $\mathcal{N}^{k} \rightarrow \mathcal{N}^{k}$ to act on vectors of names by

$$
\sigma\left(\left(n_{1}, \ldots, n_{k}\right)\right) \stackrel{\text { def }}{=}\left(\left(\sigma\left(n_{1}\right), \ldots, \sigma\left(n_{k}\right)\right)\right.
$$

2. We lift σ to actions $\mathcal{A} \rightarrow \mathcal{A}$, as defined by:

$$
\sigma(\mu) \stackrel{\text { def }}{=} \begin{cases}a^{\prime} & \text { if } \mu=a \in \mathcal{N} \text { and } \sigma(a)=a^{\prime} \\ \sigma(a) & \text { if } \mu=\bar{a} \\ \tau & \text { if } \mu=\tau\end{cases}
$$

3. We lift σ to processes $\mathcal{P}^{\text {seq }} \rightarrow \mathcal{P}^{\text {seq }}$, as inductively defined by:

$$
\begin{aligned}
& \sigma(\mathbf{0}) \stackrel{\text { def }}{=} \\
& 0 \\
& \sigma(\mu \cdot P) \stackrel{\text { def }}{=} \sigma(\mu) \cdot \sigma(P) \\
& \sigma\left(M_{1}+M_{2}\right) \stackrel{\text { def }}{=} \sigma\left(M_{1}\right)+\sigma\left(M_{2}\right) \\
& \sigma(\mathrm{A}\langle\vec{a}\rangle) \stackrel{\text { def }}{=} \mathrm{A}\langle\sigma(\vec{a})\rangle
\end{aligned}
$$

2.5 Notation Let $\sigma: \mathcal{N} \rightarrow \mathcal{N}$ be a substitution with finite support. Then, we often represent σ more concretely as $\{\sigma(\vec{n}) / \vec{n}\}$, where \vec{n} denote an arbitrary vector enumerating the elements of $\sup (\sigma)$.
Dually, given any vectors \vec{a} and \vec{b} of equal length, then $\{\vec{a} / \vec{b}\}$ uniquely defines a substitution.

2.6 Definition (Operational Semantics)

The LTS $\left(\mathcal{P}^{\text {seq }}, \mathcal{T}\right)$ of sequential process expressions over \mathcal{A} has $\mathcal{P}^{\text {seq }}$ as states, and its transitions \mathcal{T} are precisely generated by the following rules:

$$
\begin{gathered}
\text { PRE: } \mu . P \xrightarrow{\mu} P \\
\text { SUM }_{1}: \frac{M_{1} \xrightarrow{\mu} M_{1}^{\prime}}{M_{1}+M_{2} \xrightarrow{\mu} M_{1}^{\prime}} \quad \text { SUM }_{2}: \frac{M_{2} \xrightarrow{\mu} M_{2}^{\prime}}{M_{1}+M_{2} \xrightarrow{\mu} M_{2}^{\prime}} \\
\text { DEF: } \stackrel{\{\vec{c} / \vec{a}\} M \xrightarrow{\mu} P^{\prime}}{\mathrm{A}\langle\vec{c}\rangle \xrightarrow{\mu} P^{\prime}} \text { IF A }(\vec{a}) \stackrel{\text { def }}{=} M
\end{gathered}
$$

Note that "transition under prefix" is not allowed.
2.7 Notation We also use the abbreviation

$$
\sum_{i \in I} \mu_{i} \cdot P_{i}:=\mu_{1} \cdot P_{1}+\ldots+\mu_{n} \cdot P_{n}
$$

where I is the finite indexing set $\{1 \ldots, n\}$.
Note that then the order of summands is not fixed.

