
Concurrency Semantics
Week 3

Course Notes 2005
EPFL – I&C

Uwe Nestmann
Johannes Borgström

April 27, 2005

1

$Id: notes-3.tex,v 1.8 2005/04/25 16:16:12 uwe Exp $

1 Simulation & Bisimulation

1.1 Definition (Labeled Transition System / LTS)
Let A be an action alphabet.
An LTS over A is a pair (Q, T) with

• a set of states Q = {q0, q1 . . .}

• a ternary transition relation T ⊆ (Q×A×Q)

A transition (q, µ, q′) ∈ T is also written q
µ
−−→T q′.

If q
µ1

−−−→T q1 · · ·
µn

−−−→T qn we call qn a derivative of q.

Usually we omit the subscript T of arrows.

1.2 Definition ((Strong) Simulation)
Let (Q, T) be a LTS.

1. Let S be a binary relation (on Q).
S is a (strong) simulation on (Q, T) if,
whenever p S q,

if p
µ
−−→ p′ (for some p′ ∈ Q) then

there is q′ ∈ Q such that q
µ
−−→ q′ and p′ S q′.

2. q (strongly) simulates p, written p � q,
if there is a (strong) simulation S (on (Q, T))
such that p S q.

The relation � is sometimes called similarity.

In the following, if the underlying transition system
is clear in the respective reasoning context, then we
usually omit to specify “on Q” (for binary relations)
or “on (Q, T)” (for simulations).

1.3 Lemma Let (Q, T) be a LTS.
If S1 and S2 are simulations, then

1. S1 ∪ S2 is also a simulation.

2. S1S2 is also a simulation.

Note that S1 ∩ S2 is not necessarily a simulation.

1.4 Proposition Let (Q, T) be a LTS.

1. � =
⋃

{ S | S is simulation on (Q, T) }

2. � is the largest simulation on (Q, T).

3. (Q,�) is a preorder.

2

1.5 Definition (Mutual Simulation)
Let (Q, T) be a LTS. Let p, q ∈ Q.
p and q are mutually similar, written p ≷ q,
if there is a pair (S1, S2) of simulations S1 and S2

with p S1 q S2 p (i.e., with p S1 q and q S2 p).

1.6 Proposition ≷ is an equivalence relation.

1.7 Definition ((Strong) Bisimulation)
Let (Q, T) be a LTS.
A binary relation B on Q is
a (strong) bisimulation on (Q, T)
if both B and B−1 are (strong) simulations.
p and q are (strongly) bisimilar, written p ∼ q,
if there is a (strong) bisimulation B such that p B q.

1.8 Proposition

1. ∼ =
⋃

{ S | S is (strong) bisimulation on (Q, T) }

2. ∼ is the largest bisimulation on (Q, T).

3. ∼ is an equivalence relation.

2 Sequential Processes

2.1 Notation We use the following sets of entities with
corresponding meta-variables:

I process identifiers A,B . . .
N names a, b, c . . .

N co-names a, b, c . . .
L labels λ . . . ∈ L := N ∪N
A actions µ, β . . . ∈ L ∪ {τ}

Labels are often also called visible/external actions.
In contrast, τ is called invisible/internal action.
We use~a to denote finite sequences a1 . . . , an of names.
We will use parameterized processes A〈~a 〉 with name
parameters (neither co-names, nor labels, . . .)

2.2 Definition (Sequential Process Expressions)
The sets Pseq and Mseq of sequential process expres-
sions is defined by the following BNF-syntax:

P ::= A〈~a 〉
∣

∣ M
M ::= 0

∣

∣ µ.P
∣

∣ M + M

We use P, Pi . . . to denote process expressions,
while M,Mi . . . always denote choices or summations.

3

Each process identifier A is assumed to have a defin-
ing equation (note the brackets)

A(~a)
def
= M

where M is a summation, and~a includes fn(M), which
denotes the set of (free) names of P (see Definition 2.3).

Then, A〈~b 〉 is supposed to mean the same as {
~b/~a}M ,

which is defined as simultaneous substitution of all
occurrences of ~a by~b (see Definition 2.4).

Note that ~a does only include names (∈ N), not co-
names, and neither τ .

2.3 Definition ((Free) Names) fn : Pseq → P(N)
The set fn(P) is defined inductively by:

fn(µ)
def
=











{b} if µ = b

{b} if µ = b̄

∅ if µ = τ

fn(0)
def
= ∅

fn(µ.P)
def
= fn(µ) ∪ fn(P)

fn(M1 + M2)
def
= fn(M1) ∪ fn(M2)

fn(A〈~a 〉)
def
= {~a}

2.4 Definition (Simultaneous Substitution)
A substitution σ is a total function σ : N → N .
The set sup(σ)

def
= {n ∈ N | σ(n) 6= n }

denotes the support of σ.

1. For k ∈ N , we lift σ to N k → N k to act on
vectors of names by

σ((n1, . . . , nk))
def
= ((σ(n1), . . . , σ(nk))

2. We lift σ to actions A → A, as defined by:

σ(µ)
def
=











a′ if µ = a ∈ N and σ(a) = a′

σ(a) if µ = a

τ if µ = τ

3. We lift σ to processes Pseq → Pseq,
as inductively defined by:

σ(0)
def
= 0

σ(µ.P)
def
= σ(µ).σ(P)

σ(M1 + M2)
def
= σ(M1) + σ(M2)

σ(A〈~a 〉)
def
= A〈σ(~a) 〉

4

2.5 Notation Let σ : N → N be a substitution with fi-
nite support. Then, we often represent σ more con-
cretely as {σ(~n)/~n}, where ~n denote an arbitrary vec-
tor enumerating the elements of sup(σ).

Dually, given any vectors ~a and ~b of equal length,
then {~a/~b} uniquely defines a substitution.

2.6 Definition (Operational Semantics)
The LTS (Pseq, T) of sequential process expressions
over A has Pseq as states, and its transitions T are
precisely generated by the following rules:

PRE: µ.P
µ
−−→ P

SUM1 :
M1

µ
−−→ M ′

1

M1+M2
µ
−−→ M ′

1

SUM2 :
M2

µ
−−→ M ′

2

M1+M2
µ
−−→ M ′

2

DEF:
{~c/~a}M

µ
−−→ P ′

A〈~c 〉
µ
−−→ P ′

IF A(~a)
def
= M

Note that “transition under prefix” is not allowed.

2.7 Notation We also use the abbreviation

∑

i∈I

µi.Pi := µ1.P1 + . . . + µn.Pn

where I is the finite indexing set {1 . . . , n}.
Note that then the order of summands is not fixed.

5

