Concurrency Semantics

1. Warmup

1. Show that for all processes P, Q, we have

$$
a \cdot P+\tau \cdot Q \approx a \cdot P+\tau \cdot(a \cdot P+\tau \cdot Q) .
$$

Conclude that the process equation $X \approx a . P+\tau . X$ has infinitely many solutions for X, even when taken up to weak bisimilarity. Why does this not contradict Theorem 5.11?
2. Write down a weak bisimulation relating $\operatorname{Buf}^{(2)}\left(i_{0}, i_{1}, o_{0}, o_{1}\right)$ and $\operatorname{Buf}^{(1)}\left\langle i_{0}, i_{1}, o_{0}, o_{1}\right\rangle^{o_{0}, o_{1}} \frown^{i_{0}, i_{1}} \operatorname{Buf}^{(1)}\left\langle i_{0}, i_{1}, o_{0}, o_{1}\right\rangle$, as defined in last week's exercises.

2. Scheduler

Recall the sceduler example of session 3:

- A set of n processes $P_{i}, 0 \leq i \leq n-1$ is to be scheduled as follows:
- P_{i} starts a task by sync'ing on a_{i} with the scheduler.
- P_{i} completes a task by sync'ing on b_{i} with the scheduler.
- Concurrency is allowed:
- Tasks of different P_{i} may run at the same time.
- There is a mutual exclusion property to be respected:
- Each P_{i} must not run two tasks at a time.
- For each i, a_{i} and b_{i} must occur cyclically.
- The scheduling of start permissions shall be round-robin:
- The a_{i} are required to occur cyclically (initially, 0 starts)
- The overall system shall provide maximal "progress":
- the scheduling must permit any action at any time provided that the other properties are not violated.

The specification can be formalized as sequential non-deterministic process.
Let $i \in\{0 \ldots, n-1\}, X \subseteq\{0 \ldots, n-1\}, \vec{a} \stackrel{\text { def }}{=} a_{0} \ldots, a_{n-1}$ and $\vec{b} \stackrel{\text { def }}{=} b_{0} \ldots, b_{n-1}$. Then the process constants Sspec ${ }_{i}^{\mathrm{n}} \mathrm{X}(\vec{a}, \vec{b})$, defined by

$$
\operatorname{Sspec}_{\mathrm{i}, \mathrm{x}}^{\mathrm{n}}(\vec{a}, \vec{b}):= \begin{cases}\sum_{j \in X} b_{j} \cdot \operatorname{Sspec}_{\mathrm{i}, \mathrm{X}-\mathrm{j}}^{\mathrm{n}}\langle\vec{a}, \vec{b}\rangle & (i \in X) \\ \sum_{j \in X} b_{j} \cdot \operatorname{Sspec}_{\mathrm{i}, \mathrm{X}-\mathrm{j}}\langle\vec{a}, \vec{b}\rangle+a_{i} \cdot \operatorname{Sspec}_{\left(\mathrm{i} \oplus \oplus_{\mathrm{n}} 1\right), \mathrm{xui}}^{\mathrm{n}}\langle\vec{a}, \vec{b}\rangle & (i \notin X)\end{cases}
$$

each represents a state of a scheduler, where process i is the next to get the start permission, and where every $j \in X$ is currently running. The initial state is

$$
\text { Scheduler }^{n} \stackrel{\text { def }}{=} \operatorname{Sspec}_{0, \emptyset}^{\mathrm{n}}\langle\vec{a}, \vec{b}\rangle
$$

Today, we will attempt to implement this scheduler as a parallel composition of scheduler "cells", one for each process. These cells, of the form $\mathrm{A}(a, b, c, d)$, synchronize with the controlled process on the channel a and b as above, and pass on (resp. receive) permission to start the associated process on the channel c (resp. d). Formally, we define process constants for a single cell as

$$
\begin{array}{lll}
\mathrm{A}(a, b, c, d) & :=a \cdot \mathrm{C}\langle a, b, c, d\rangle & \mathrm{C}(a, b, c, d) \\
\mathrm{B}(a, b, c, d) & :=b \cdot \mathrm{D}\langle a, b, c, d\rangle & \mathrm{D}(a, b, c, d)
\end{array}:=\bar{d} \cdot \mathrm{~B}\langle a, b, c, d\rangle . \mathrm{A}\langle a, b, c, d\rangle .
$$

For a given number n of processes to schedule, we let $\vec{a} \stackrel{\text { def }}{=} a_{0} \ldots, a_{n-1}$,
$\vec{b} \stackrel{\text { def }}{=} b_{0} \ldots, b_{n-1}$ and $\vec{c} \stackrel{\text { def }}{=} c_{0} \ldots, c_{n-1}$. The scheduler process is then defined as follows.

$$
\begin{array}{lllll}
\mathbf{A}_{i}^{n} & \stackrel{\text { def }}{=} & \mathrm{A}\left\langle a_{i}, b_{i}, c_{i}, c_{i \ominus_{n} 1}\right\rangle & \mathbf{B}_{i}^{n} & \stackrel{\text { def }}{=} \\
\mathrm{B}\left\langle a_{i}, b_{i}, c_{i}, c_{i \ominus_{n} 1}\right\rangle \\
\mathbf{C}_{i}^{n} & \stackrel{\text { def }}{=} & \mathrm{C}\left\langle a_{i}, b_{i}, c_{i}, c_{i \ominus_{n} 1}\right\rangle & \mathbf{D}_{i}^{n} \stackrel{\text { def }}{=} & \mathrm{D}\left\langle a_{i}, b_{i}, c_{i}, c_{i \ominus_{n} 1}\right\rangle
\end{array}
$$

$$
\mathbf{S i m p l}^{n} \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(\mathbf{A}_{0}^{n}\left|\mathbf{D}_{1}^{n}\right| \cdots \mid \mathbf{D}_{n-1}^{n}\right)
$$

1. (a) Draw the transition diagrams for Scheduler ${ }^{2}$ and Simpl ${ }^{2}$.
(b) Argue that the two processes are not weakly bisimilar.
(c) Explain precisely why $\mathbf{S i m p l}^{2}$ does not satisfy the (informal) specification of the scheduler (to the assistant or your neighbor).
2. Change the definition of $\boldsymbol{S i m p l}^{n}$ as follows.

$$
\begin{align*}
\mathrm{C}(a, b, c, d) & :=c \cdot \mathrm{E}\langle a, b, c, d\rangle \tag{1}\\
\mathrm{D}(a, b, c, d) & :=d \cdot \mathrm{~A}\langle a, b, c, d\rangle \tag{2}
\end{align*}
$$

Give a definition of E that solves the problem of 1 above.
3. Prove that Scheduler ${ }^{2} \approx$ Simpl 2, using your new definition of C and E.

Hint (try first by hand for a small $n(2-4)$):
(a) Provide a uniform representation of the state space of a ring of cells: Let $\operatorname{Simpl}_{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}}^{n}$ represent a state where the cells with numbers in $X_{A} \subseteq\{0, \ldots n-1\}$ are in state A , and so on for X_{B}, X_{C}, \ldots

$$
\begin{aligned}
& \operatorname{Simpl}_{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}}^{n} \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(\prod_{i \in X_{A}} \mathrm{~A}_{i}^{n}\langle\vec{a}, \vec{b}, \vec{c}\rangle \mid \prod_{i \in X_{B}} \mathrm{~B}_{i}^{n}\langle\vec{a}, \vec{b}, \vec{c}\rangle\right. \\
& \mid\left.\prod_{i \in X_{C}} \mathrm{C}_{i}^{n}\langle\vec{a}, \vec{b}, \vec{c}\rangle\left|\prod_{i \in X_{D}} \mathrm{D}_{i}^{n}\langle\vec{a}, \vec{b}, \vec{c}\rangle\right| \prod_{i \in X_{E}} \mathrm{E}_{i}^{n}\langle\vec{a}, \vec{b}, \vec{c}\rangle\right)
\end{aligned}
$$

(b) Assuming that $X_{A}, X_{B}, X_{C}, X_{D}, X_{E}$ are mutually disjoint, give the transitions of $\operatorname{Simpl}_{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}}^{n}$ (to other $\boldsymbol{S i m p l}_{X_{A}^{\prime}, X_{B}^{\prime}, X_{C}^{\prime}, X_{D}^{\prime}, X_{E}^{\prime}}^{n}$).
Note that $\left|X_{A}\right|+\left|X_{B}\right|+\left|X_{C}\right|$ is invariant. What is the intuitive meaning of states where $\left|X_{A}\right|+\left|X_{B}\right|+\left|X_{C}\right|=1$ and $X_{A} \cup X_{B} \cup X_{C} \cup X_{D} \cup X_{E}=$ $\{0, \ldots n-1\}$?
(c) Apply the expansion law (Proposition 3.13) once on an $\operatorname{Simpl}_{X_{A}, X_{B}, X_{C}, X_{D}, X_{E}}^{n}$ where $X_{A}, X_{B}, X_{C}, X_{D}, X_{E}$ are mutually disjoint, $\left|X_{A}\right|+\left|X_{B}\right|+\left|X_{C}\right|=1$, and $X_{A} \cup X_{B} \cup X_{C} \cup X_{D} \cup X_{E}=\{0, \ldots n-1\}$.
(d) Show that the relation S defined below, where $\{i\}, X_{D}, X_{E}$ are mutually disjoint and $\{i\} \cup X_{D} \cup X_{E}=\{0, \ldots n-1\}$, is a weak bisimulation up to \sim.

$$
\begin{aligned}
S \stackrel{\text { def }}{=}\{ & \left.\left\{\operatorname{Sspec}_{\mathrm{i}, \mathrm{X}_{\mathrm{D}}}^{n}\langle\vec{a}, \vec{b}\rangle, \operatorname{Simpl}_{\{i\}, \emptyset, \emptyset, X_{D}, X_{E}}^{n} \mid i, X_{D}, X_{E}\right)\right\} \\
& \cup\left\{\left(\operatorname{Sspec}_{\mathrm{i}, X_{D} \cup\{i\}}^{\mathrm{n}}\langle\vec{a}, \vec{b}\rangle, \operatorname{Simpl}_{\emptyset,\{i\}, \emptyset, X_{D}, X_{E}}^{n} \mid i, X_{D}, X_{E}\right)\right\} \\
& \cup\left\{\left(\operatorname{Sspec}_{\mathrm{i}+1, \mathrm{X}_{\mathrm{D}} \cup\{i\}}^{\mathrm{n}}\langle\vec{a}, \vec{b}\rangle, \operatorname{Simpl}_{\emptyset, \emptyset,\{i\}, X_{D}, X_{E}}^{n} \mid i, X_{D}, X_{E}\right)\right\}
\end{aligned}
$$

(e) Conclude that Scheduler ${ }^{n} \approx \operatorname{Simpl}^{n}$.

3. An Alternative Definition of Weak Simulation

We extend the definition of $\dot{\Rightarrow}$ to tuples of visible actions in the following way:

$$
\xlongequal{\lambda_{0} \vec{\lambda}} \stackrel{\text { def }}{=} \xlongequal{\lambda_{0}} \xlongequal{\Longrightarrow} \stackrel{\vec{\lambda}}{\Longrightarrow} \text {. }
$$

We can then give an alternative definition of weak simulation:

Definition 3.1 (Weak Tuple Simulation)

Given any LTS $(\mathcal{Q}, \mathcal{T})$.
Let S be a binary relation over \mathcal{Q}.
Then S is said to be a weak tuple simulation
if, whenever $P S Q$ and $\vec{\lambda}$ is a tuple of visible actions, we have

- if $P \xlongequal{\vec{\lambda}} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \xlongequal{\vec{\lambda}} Q^{\prime}$ and $P^{\prime} S Q^{\prime}$.

Prove that an arbitrary relation S is a weak simulation if and only if it is a weak tuple simulation.

