1. Warmup

1. Show that for all processes *P*, *Q*, we have

 $a.P + \tau.Q \approx a.P + \tau.(a.P + \tau.Q).$

Conclude that the process equation $X \approx a.P + \tau.X$ has infinitely many solutions for X, even when taken up to weak bisimilarity. Why does this not contradict Theorem 5.11?

2. Write down a weak bisimulation relating $Buf^{(2)}(i_0, i_1, o_0, o_1)$ and $Buf^{(1)}\langle i_0, i_1, o_0, o_1 \rangle$ $a_{i_0, i_1} \wedge a_{i_0, i_1} \wedge a_{i_0, i_1} \wedge a_{i_0, i_1} \rangle$, as defined in last week's exercises.

2. Scheduler

Recall the sceduler example of session 3:

- A set of *n* processes $P_i, 0 \le i \le n-1$ is to be scheduled as follows:
 - P_i starts a task by sync'ing on a_i with the scheduler.
 - P_i completes a task by sync'ing on b_i with the scheduler.
- Concurrency is allowed:
 - Tasks of different P_i may run at the same time.
- There is a mutual exclusion property to be respected:
 - Each *P_i* must not run two tasks at a time.
 - For each i, a_i and b_i must occur cyclically.
- The scheduling of start permissions shall be *round-robin*:
 - The a_i are required to occur cyclically (initially, 0 starts)
- The overall system shall provide *maximal "progress"*:
 - the scheduling must permit any action at any time provided that the other properties are not violated.

The specification can be formalized as sequential non-deterministic process.

Let $i \in \{0..., n-1\}$, $X \subseteq \{0..., n-1\}$, $\vec{a} \stackrel{\text{def}}{=} a_0..., a_{n-1}$ and $\vec{b} \stackrel{\text{def}}{=} b_0..., b_{n-1}$. Then the process constants $\text{Sspec}_{i,X}^n(\vec{a}, \vec{b})$, defined by

$$\mathsf{Sspec}_{\mathsf{i},\mathsf{X}}^{\mathsf{n}}(\vec{a},\vec{b}\,) := \begin{cases} \sum_{j \in X} b_j.\mathsf{Sspec}_{\mathsf{i},\mathsf{X}-j}^{\mathsf{n}}\langle \vec{a},\vec{b}\,\rangle & (i \in X) \\ \sum_{j \in X} b_j.\mathsf{Sspec}_{\mathsf{i},\mathsf{X}-j}^{\mathsf{n}}\langle \vec{a},\vec{b}\,\rangle + a_i.\mathsf{Sspec}_{(i\oplus_{\mathsf{n}}1),\mathsf{X}\cup\mathsf{i}}^{\mathsf{n}}\langle \vec{a},\vec{b}\,\rangle & (i \notin X) \end{cases}$$

each represents a state of a scheduler, where process *i* is the next to get the start permission, and where every $j \in X$ is currently running. The initial state is

 $\mathbf{Scheduler}^n \stackrel{\text{def}}{=} \mathsf{Sspec}^{\mathsf{n}}_{\mathsf{0},\emptyset} \langle \, \vec{a}, \vec{b} \, \rangle$

Today, we will attempt to implement this scheduler as a parallel composition of scheduler "cells", one for each process. These cells, of the form A(a, b, c, d), synchronize with the controlled process on the channel a and b as above, and pass on (resp. receive) permission to start the associated process on the channel c (resp. d). Formally, we define process constants for a single cell as

For a given number *n* of processes to schedule, we let $\vec{a} \stackrel{\text{def}}{=} a_0 \dots, a_{n-1}$, $\vec{b} \stackrel{\text{def}}{=} b_0 \dots, b_{n-1}$ and $\vec{c} \stackrel{\text{def}}{=} c_0 \dots, c_{n-1}$. The scheduler process is then defined as follows.

$$\mathbf{A}_{i}^{n} \stackrel{\text{def}}{=} \mathsf{A}\langle a_{i}, b_{i}, c_{i}, c_{i\ominus_{n}1} \rangle \qquad \mathbf{B}_{i}^{n} \stackrel{\text{def}}{=} \mathsf{B}\langle a_{i}, b_{i}, c_{i}, c_{i\ominus_{n}1} \rangle \\ \mathbf{C}_{i}^{n} \stackrel{\text{def}}{=} \mathsf{C}\langle a_{i}, b_{i}, c_{i}, c_{i\ominus_{n}1} \rangle \qquad \mathbf{D}_{i}^{n} \stackrel{\text{def}}{=} \mathsf{D}\langle a_{i}, b_{i}, c_{i}, c_{i\ominus_{n}1} \rangle \\ \mathbf{Simpl}^{n} \stackrel{\text{def}}{=} (\boldsymbol{\nu}\vec{c}) \left(\mathbf{A}_{0}^{n} | \mathbf{D}_{1}^{n} | \cdots | \mathbf{D}_{n-1}^{n} \right)$$

- 1. (a) Draw the transition diagrams for **Scheduler**² and **Simpl**².
 - (b) Argue that the two processes are not weakly bisimilar.
 - (c) Explain precisely why **Simpl**² does not satisfy the (informal) specification of the scheduler (to the assistant or your neighbor).
- 2. Change the definition of **Simpl**^{*n*} as follows.

$$\mathsf{C}(a,b,c,d) := c.\mathsf{E}\langle a,b,c,d \rangle \tag{1}$$

$$\mathsf{D}(a,b,c,d) := d.\mathsf{A}\langle a,b,c,d \rangle \tag{2}$$

Give a definition of E that solves the problem of 1 above.

- Prove that Scheduler² ≈ Simpl², using your new definition of C and E. Hint (try first by hand for a small *n* (2-4)):
 - (a) Provide a uniform representation of the state space of a ring of cells: Let $\mathbf{Simpl}_{X_A,X_B,X_C,X_D,X_E}^n$ represent a state where the cells with numbers in $X_A \subseteq \{0, \ldots n-1\}$ are in state A, and so on for X_B, X_C, \ldots

$$\mathbf{Simpl}_{X_A, X_B, X_C, X_D, X_E}^n \stackrel{\text{def}}{=} (\boldsymbol{\nu}\vec{c}) \left(\prod_{i \in X_A} \mathsf{A}_i^n \langle \vec{a}, \vec{b}, \vec{c} \rangle \middle| \prod_{i \in X_B} \mathsf{B}_i^n \langle \vec{a}, \vec{b}, \vec{c} \rangle \right) \\ \left| \prod_{i \in X_C} \mathsf{C}_i^n \langle \vec{a}, \vec{b}, \vec{c} \rangle \middle| \prod_{i \in X_D} \mathsf{D}_i^n \langle \vec{a}, \vec{b}, \vec{c} \rangle \middle| \prod_{i \in X_E} \mathsf{E}_i^n \langle \vec{a}, \vec{b}, \vec{c} \rangle \right)$$

- (b) Assuming that X_A, X_B, X_C, X_D, X_E are mutually disjoint, give the transitions of $\mathbf{Simpl}_{X_A, X_B, X_C, X_D, X_E}^n$ (to other $\mathbf{Simpl}_{X'_A, X'_B, X'_C, X'_D, X'_E}^n$). Note that $|X_A| + |X_B| + |X_C|$ is invariant. What is the intuitive meaning of states where $|X_A| + |X_B| + |X_C| = 1$ and $X_A \cup X_B \cup X_C \cup X_D \cup X_E = \{0, \dots, n-1\}$?
- (c) Apply the expansion law (Proposition 3.13) once on an $\operatorname{Simpl}_{X_A, X_B, X_C, X_D, X_E}^n$ where X_A, X_B, X_C, X_D, X_E are mutually disjoint, $|X_A| + |X_B| + |X_C| = 1$, and $X_A \cup X_B \cup X_C \cup X_D \cup X_E = \{0, \dots, n-1\}$.

(d) Show that the relation *S* defined below, where $\{i\}, X_D, X_E$ are mutually disjoint and $\{i\} \cup X_D \cup X_E = \{0, \dots, n-1\}$, is a weak bisimulation up to \sim .

$$S \stackrel{\text{def}}{=} \{ (\mathsf{Sspec}_{\mathsf{i},\mathsf{X}_{\mathsf{D}}}^{\mathsf{n}} \langle \vec{a}, \vec{b} \rangle, \mathbf{Simpl}_{\{i\},\emptyset,\emptyset,X_{D},X_{E}}^{n} \mid i, X_{D}, X_{E}) \} \\ \cup \{ (\mathsf{Sspec}_{\mathsf{i},\mathsf{X}_{\mathsf{D}}\cup\{i\}}^{\mathsf{n}} \langle \vec{a}, \vec{b} \rangle, \mathbf{Simpl}_{\emptyset,\{i\},\emptyset,X_{D},X_{E}}^{n} \mid i, X_{D}, X_{E}) \} \\ \cup \{ (\mathsf{Sspec}_{\mathsf{i}+1,\mathsf{X}_{\mathsf{D}}\cup\{i\}}^{\mathsf{n}} \langle \vec{a}, \vec{b} \rangle, \mathbf{Simpl}_{\emptyset,\emptyset,\{i\},X_{D},X_{E}}^{n} \mid i, X_{D}, X_{E}) \}$$

(e) Conclude that Schedulerⁿ \approx Simplⁿ.

3. An Alternative Definition of Weak Simulation

We extend the definition of \Rightarrow to tuples of visible actions in the following way:

$$\xrightarrow{\lambda_0 \vec{\lambda}} \stackrel{\text{def}}{=} \xrightarrow{\lambda_0} \stackrel{\vec{\lambda}}{\Longrightarrow} .$$

We can then give an alternative definition of weak simulation:

Definition 3.1 (Weak Tuple Simulation)

Given any LTS (Q, T). Let S be a binary relation over Q. Then S is said to be a weak tuple simulation if, whenever P S Q and $\vec{\lambda}$ is a tuple of visible actions, we have

• if $P \stackrel{\vec{\lambda}}{\Longrightarrow} P'$ then there is $Q' \in \mathcal{P}$ such that $Q \stackrel{\vec{\lambda}}{\Longrightarrow} Q'$ and P' S Q'.

Prove that an arbitrary relation S is a weak simulation if and only if it is a weak tuple simulation.