1. Warmup

1. Write down a clash-free process that is α -equivalent to

 $(\boldsymbol{\nu}a) (a.(\boldsymbol{\nu}a) a.\mathbf{0} \mid (\boldsymbol{\nu}a) a.\mathbf{0}).$

Prove that the two processes are α -equivalent.

2. Write down the silent (τ) transitions of the process

$$(\boldsymbol{\nu}a)(a.Q_1+b.Q_2 \mid \overline{a}.\mathbf{0}) \mid \overline{b}.R_1+\overline{a}.R_2.$$

Give a formal derivation for one of them.

3. Prove that any two α -equivalent processes are bisimilar.

2. Transitions

Prove the following propositions.

- 1. If $P \xrightarrow{\mu} P'$ then $\operatorname{fn}(P') \cup \operatorname{fn}(\mu) \subseteq \operatorname{fn}(P)$.
- 2. If $P \xrightarrow{\mu} P'$ and σ is a substitution (with finite support) then $\sigma P \xrightarrow{\sigma \mu} \sigma P'$.

3. Buffers

Recall the boolean single- and two-place buffers

- 1. Construct a two-place buffer from two one-place buffers.
- 2. Is your two-place buffer bisimilar to the one defined above? Prove that your response is correct.
- 3. If necessary, modify the definition above of the two-place buffer to make the two processes bisimilar, and prove the bisimilarity.