
Concurrency Semantics
Exercises 1 Prof. Nestmann, 2005

1. Simulation

Let (Q, T ) be the LTS over A = { b, c } where

Q = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
T = { (1, b, 2), (1, c, 3), (4, b, 5), (6, b, 7), (6, c, 8), (6, c, 9) }

• We call pairs in Q×Q trivial

1. if they are an element of the identity relation on Q, or

2. if they are an element of {2, 3, 5, 7, 8, 9} × {2, 3, 5, 7, 8, 9}.

• We call simulations trivial if they

1. are empty

2. contain only trivial pairs

3. contain at least one trivial pair that is not reachable from a contained non-
trivial one

Find all non-trivial simulations in (Q, T ). How many are there?
(Hint: there are more than you might expect . . . )

2. Bisimulation

Let (Q, T ) be an arbitrary LTS.
Prove that ∼ is an equivalence relation.



Exercises 1 2

3. Operational Semantics

Milner’s Scheduler Example and Exercise (§3.6, Exercise 3.15).

A set of n processes Pi, 0 ≤ i ≤ n−1 is to be scheduled as follows:

• Pi starts a task by sync’ing on ai with the scheduler.

• Pi completes a task by sync’ing on bi with the scheduler.

Concurrency is allowed:

• Tasks of different Pi may run at the same time.

There is a mutual exclusion property to be respected:

• Each Pi must not run two tasks at a time.

• For each i, ai and bi must occur cyclically.

The scheduling of start permissions shall be round-robin:

• The ai are required to occur cyclically (initially, 0 starts)

The overall systen shall provide maximal “progress”:

• the scheduling must permit any of the “buttons” to be pressed at any time pro-
vided the other properties are not violated.

The specification can be formalized as sequential non-deterministic process.
Let i ∈ {0 . . . , n−1}. Let X ⊆ {0 . . . , n−1}. Then Si,X(~a,~b ), defined by

Si,X
def=

{∑
j∈X bj .Si,X−j (i ∈ X)∑
j∈X bj .Si,X−j + ai.S(i+1) mod n,X∪i (i 6∈ X)

represents a scheduler, where i is next to have the start permission, and where every
j ∈ X is currently running. Initially:

Schedulern
def= S0,∅

Tasks:

1. Draw the transition graph for n = 2.

2. Argue why the scheduler is never deadlocked.

3. Understand the difference in behavior when dropping the case for i ∈ X .


