1. Simulation

Let (Q, T) be the LTS over $A = \{b, c\}$ where

- We call pairs in $Q \times Q$ trivial
 - 1. if they are an element of the identity relation on Q, or
 - 2. if they are an element of $\{2, 3, 5, 7, 8, 9\} \times \{2, 3, 5, 7, 8, 9\}$.
- We call simulations *trivial* if they
 - 1. are empty
 - 2. contain only trivial pairs
 - 3. contain at least one trivial pair that is not reachable from a contained nontrivial one

Find *all non-trivial* simulations in (Q, T). How many are there? (Hint: there are more than you might expect ...)

2. Bisimulation

Let (Q, T) be an arbitrary LTS. Prove that \sim is an equivalence relation.

3. Operational Semantics

Milner's Scheduler Example and Exercise (§3.6, Exercise 3.15).

A set of *n* processes $P_i, 0 \le i \le n-1$ is to be scheduled as follows:

- P_i starts a task by sync'ing on a_i with the scheduler.
- P_i completes a task by sync'ing on b_i with the scheduler.

Concurrency is allowed:

• Tasks of different P_i may run at the same time.

There is a mutual exclusion property to be respected:

- Each *P_i* must not run two tasks at a time.
- For each *i*, *a_i* and *b_i* must occur cyclically.

The scheduling of start permissions shall be *round-robin*:

• The *a_i* are required to occur cyclically (initially, 0 starts)

The overall systen shall provide *maximal "progress"*:

• the scheduling must permit any of the "buttons" to be pressed at any time provided the other properties are not violated.

The specification can be formalized as sequential non-deterministic process. Let $i \in \{0..., n-1\}$. Let $X \subseteq \{0..., n-1\}$. Then $S_{i,X}(\vec{a}, \vec{b})$, defined by

$$\mathbf{S}_{i,X} \stackrel{\text{def}}{=} \begin{cases} \sum_{j \in X} b_j . \mathbf{S}_{i,X-j} & (i \in X) \\ \sum_{j \in X} b_j . \mathbf{S}_{i,X-j} + a_i . \mathbf{S}_{(i+1) \mod n, X \cup i} & (i \notin X) \end{cases}$$

represents a scheduler, where *i* is next to have the start permission, and where every $j \in X$ is currently running. Initially:

Scheduler_n
$$\stackrel{\text{def}}{=}$$
 S_{0.0}

Tasks:

- 1. Draw the transition graph for n = 2.
- 2. Argue why the scheduler is never deadlocked.
- 3. Understand the difference in behavior when dropping the case for $i \in X$.