Local confluence of the λ -calculus

We will show today that the λ -calculus is locally confluent (it is actually confluent but this is another story).

Local confluence

Show that if $M \in \Lambda$, $M \to_{\beta} M'$ and $M \to_{\beta} M''$ then there exists $N \in \Lambda$ such that $M' \to_{\beta}^{\star} N$ and $M'' \to_{\beta}^{\star} N$.

Proof:

We show this result by induction on M.

- If M is a variable x, then M is in β -normal form and the result trivially holds.
- If M is an abstraction $\lambda x.M_1$: Necessarily, we have $M' = \lambda x.M'_1$ and $M'' = \lambda x.M''_1$ with $M_1 \to_{\beta} M'_1$ and $M_1 \to_{\beta} M''_1$.

By induction hypothesis, there exists N_1 such that $M'_1 \to^{\star}_{\beta} N_1$ and $M''_1 \to^{\star}_{\beta} N_1$.

So, we have $\lambda x.M'_1 \to^{\star}_{\beta} \lambda x.N_1$ and $\lambda x.M''_1 \to^{\star}_{\beta} \lambda x.N_1$.

Let N be $\lambda x.N_1$. Then $M' \to^{\star}_{\beta} N$ and $M'' \to^{\star}_{\beta} N$. The result holds.

- If M is an application M_1M_2 , there are several cases, depending on which part of M reduces to give M' and M'':
 - If $M' = M'_1 M_2$ and $M'' = M''_1 M_2$ with $M_1 \to_{\beta} M'_1$ and $M_1 \to_{\beta} M''_1$. Then by induction hypothesis, there exists N_1 such that $M'_1 \to_{\beta}^{\star} N_1$ and $M''_1 \to_{\beta}^{\star} N_1$. Let N be $N_1 M_2$. Then $M' \to_{\beta}^{\star} N$ and $M'' \to_{\beta}^{\star} N$.
 - If $M' = M_1 M'_2$ and $M'' = M_1 M''_2$ with $M_2 \to_\beta M'_2$ and $M_2 \to_\beta M''_2$. The same reasoning as above (but with M_2 instead of M_1) gives the result.
 - If $M' = M'_1 M_2$ and $M'' = M_1 M''_2$ with $M_1 \to_\beta M'_1$ and $M_2 \to_\beta M''_2$. Let N be $M'_1 M''_2$. Then $M' \to_\beta N$ and $M'' \to_\beta N$
 - If $M = (\lambda x.M_0)M_2$ and $M' = (\lambda x.M'_0)M_2$ and $M'' = M_0 [x/M_2]$ with $M_0 \rightarrow_\beta M'_0$.

Let N be $M'_0[x/M_2]$. We have that $M' \to_\beta N$. Moreover, by the third substitution lemma, we have that $M'' \to_\beta N$. So the result holds.

- If $M = (\lambda x.M_0)M_2$ and $M' = (\lambda x.M_0)M'_2$ and $M'' = M_0 [x/M_2]$ with $M_2 \to_\beta M'_2$.

Let N be $M_0 \begin{bmatrix} x \\ M'_2 \end{bmatrix}$. Then, we have $M' \to_{\beta} N$. By the first substitution lemma, we have that $M'' \to_{\beta}^{\star} N$ and so the result holds.

In all possible cases, we have shown that there exists N such that $M' \to_{\beta}^{\star} N$ and $M'' \to_{\beta}^{\star} N$.

By induction principle, the result holds.

First Substitution Lemma

Show that if $M, N \in \Lambda$ and $N \to_{\beta} N'$ then $M[x/N] \to_{\beta}^{\star} M[x/N']$.

Proof:

We show this by structural induction on the term M.

- If M is a variable z, there are two cases:
 - Either z = x:

In this case, $M[x/N] = N \rightarrow_{\beta} N' = M[x/N']$ and so the claim holds.

- − Or $z = y \neq x$ In this case, M[x/N] = y = M[x/N'] and we have $y \to_{\beta}^{\star} y$ and the claim also holds.
- If M is an abstraction $\lambda y.M'$ (we can choose y such that $y \neq x$ and $y \notin fv(N) \cup fv(N')$ by α -conversion):

By induction hypothesis, $M' [x_N] \to_{\beta}^{\star} M' [x_{N'}]$ and so $\lambda y.(M' [x_N]) \to_{\beta}^{\star} \lambda y.(M' [x_{N'}])$. Now, $M [x_N] = \lambda y.(M' [x_N])$ because $x \neq y$ and $y \notin \text{fv}(N) \cup \text{fv}(N')$ and $M [x_{N'}] = \lambda y.(M' [x_{N'}])$ for the same reason.

So, $M[x/N] \rightarrow^{\star}_{\beta} M[x/N']$.

• If M is an application M_1M_2 :

By induction hypothesis, $M_1 [{}^{x}/_N] \to^{\star}_{\beta} M_1 [{}^{x}/_{N'}]$ and $M_2 [{}^{x}/_N] \to^{\star}_{\beta} M_2 [{}^{x}/_{N'}]$, so $M [{}^{x}/_N] = M_1 [{}^{x}/_N] M_2 [{}^{x}/_N] \to^{\star}_{\beta} M_1 [{}^{x}/_{N'}] M_2 [{}^{x}/_{N'}] = M [{}^{x}/_{N'}]$.

We conclude that, by induction principle, the claim holds.

Second Substitution Lemma

Show that if $M, N, P \in \Lambda$, $x \notin \text{fv}(P)$ and $x \neq y$ then M[x/N][y/P] = M[y/P][x/N[y/P]].

Proof:

By induction on M.

- If M is a variable z, there are three cases:
 - $\begin{aligned} &-z = x \\ &\text{Then, } M\left[{}^{x}\!/_{N}\right]\left[{}^{y}\!/_{P}\right] = N\left[{}^{y}\!/_{P}\right] \text{ and } M\left[{}^{y}\!/_{P}\right]\left[{}^{x}\!/_{N\left[{}^{y}\!/_{P}\right]}\right] = M\left[{}^{x}\!/_{N\left[{}^{y}\!/_{P}\right]}\right] = N\left[{}^{y}\!/_{P}\right]. \\ &-z = y \\ &\text{Then, } M\left[{}^{x}\!/_{N}\right]\left[{}^{y}\!/_{P}\right] = M\left[{}^{y}\!/_{P}\right] = P \text{ and } M\left[{}^{y}\!/_{P}\right]\left[{}^{x}\!/_{N\left[{}^{y}\!/_{P}\right]}\right] = P\left[{}^{x}\!/_{N\left[{}^{y}\!/_{P}\right]}\right] = P \text{ since } x \notin \text{fv}(P). \\ &-z \neq x, \, z \neq y \\ &\text{Then } M\left[{}^{x}\!/_{N}\right]\left[{}^{y}\!/_{P}\right] = M \text{ and } M\left[{}^{y}\!/_{P}\right]\left[{}^{x}\!/_{N\left[{}^{y}\!/_{P}\right]}\right] = M. \end{aligned}$
- If M is an abstraction $\lambda z.M'$ with $z \neq x, z \neq y, z \notin \text{fv}(N) \cup \text{fv}(P)$ (possible by α -conversion):

Then $M [x_N] [y_P] = \lambda z. (M' [x_N] [y_P]).$ By induction hypothesis, $M' [x_N] [y_P] = M' [y_P] [x_{N[y_P]}].$ Moreover, $M [y_P] [x_{N[y_P]}] = \lambda z. (M' [y_P] [x_{N[y_P]}].$ So, $M [x_N] [y_P] = M [y_P] [x_{N[y_P]}].$

• If M is an application M_1M_2 :

We apply the induction hypothesis on M_1 and M_2 and we obtain the result.

By induction principle, the result holds.

Third Substitution Lemma

Show that if $M, N \in \Lambda$ and $M \to_{\beta} M'$ then $M[x/N] \to_{\beta} M'[x/N]$.

Proof:

By induction on M.

- If M is a variable z, then M is a β -normal form and the result trivially holds.
- If $M = \lambda z.M_1$ with $z \neq x$ and $z \notin fv(N)$:

Then $M' = \lambda z.M'_1$ with $M_1 \to_{\beta} M'_1$. We have $M[x/N] = \lambda z.(M_1[x/N])$. By induction hypothesis, $M_1[x/N] \to_{\beta} M'_1[x/N]$ so $\lambda z.(M_1[x/N]) \to_{\beta} \lambda z.(M'_1[x/N])$. But $\lambda z.(M'_1[x/N]) = M'[x/N]$. So $M[x/N] \to_{\beta} M'[x/N]$.

- If $M = M_1 M_2$, there are several cases:
 - $-M' = M'_1 M_2$ with $M_1 \to M'_1$. By induction hypothesis $M_1[x/N] \to_{\beta} M'_1[x/N]$ so $M[x/N] \to_{\beta} M'[x/N]$.
 - $-M' = M_1 M'_2$ with $M_2 \to M'_2$. Same reasoning as above.
 - $M = (\lambda z.M_0)M_2 \text{ (with } z \neq x \text{ and } z \notin \text{fv}(N) \text{) and } M' = M_0 \begin{bmatrix} z/M_2 \end{bmatrix}.$ $\text{We have } M \begin{bmatrix} x/_N \end{bmatrix} = (\lambda z.(M_0 \begin{bmatrix} x/_N \end{bmatrix}))M_2 \begin{bmatrix} x/_N \end{bmatrix} \text{ which } \beta \text{-reduces to } M_0 \begin{bmatrix} x/_N \end{bmatrix} \begin{bmatrix} z/M_2 \begin{bmatrix} x/_N \end{bmatrix}].$ $\text{By the second substitution lemma, we have that } M' \begin{bmatrix} x/_N \end{bmatrix} = M_0 \begin{bmatrix} z/M_2 \end{bmatrix} \begin{bmatrix} x/_N \end{bmatrix} = M_0 \begin{bmatrix} x/_N \end{bmatrix} \begin{bmatrix} z/M_2 \begin{bmatrix} x/_N \end{bmatrix} = M_0 \begin{bmatrix} x/_N \end{bmatrix} \begin{bmatrix} z/M_2 \begin{bmatrix} x/_N \end{bmatrix}].$ $\text{So, we have } M \begin{bmatrix} x/_N \end{bmatrix} \to_{\beta} M' \begin{bmatrix} x/_N \end{bmatrix}.$

By induction principle, the result holds.