## Local confluence of the $\lambda$-calculus

We will show today that the $\lambda$-calculus is locally confluent (it is actually confluent but this is another story).

## Local confluence

Show that if $M \in \Lambda, M \rightarrow_{\beta} M^{\prime}$ and $M \rightarrow_{\beta} M^{\prime \prime}$ then there exists $N \in \Lambda$ such that $M^{\prime} \rightarrow_{\beta}^{\star} N$ and $M^{\prime \prime} \rightarrow_{\beta}^{\star} N$.

## Proof:

We show this result by induction on $M$.

- If $M$ is a variable $x$, then $M$ is in $\beta$-normal form and the result trivially holds.
- If $M$ is an abstraction $\lambda x . M_{1}$ :

Necessarily, we have $M^{\prime}=\lambda x \cdot M_{1}^{\prime}$ and $M^{\prime \prime}=\lambda x \cdot M_{1}^{\prime \prime}$ with $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$ and $M_{1} \rightarrow_{\beta}$ $M_{1}^{\prime \prime}$.
By induction hypothesis, there exists $N_{1}$ such that $M_{1}^{\prime} \rightarrow_{\beta}^{\star} N_{1}$ and $M_{1}^{\prime \prime} \rightarrow_{\beta}^{\star} N_{1}$.
So, we have $\lambda x \cdot M_{1}^{\prime} \rightarrow_{\beta}^{\star} \lambda x . N_{1}$ and $\lambda x \cdot M_{1}^{\prime \prime} \rightarrow_{\beta}^{\star} \lambda x . N_{1}$.
Let $N$ be $\lambda x \cdot N_{1}$. Then $M^{\prime} \rightarrow_{\beta}^{\star} N$ and $M^{\prime \prime} \rightarrow_{\beta}^{\star} N$. The result holds.

- If $M$ is an application $M_{1} M_{2}$, there are several cases, depending on which part of $M$ reduces to give $M^{\prime}$ and $M^{\prime \prime}$ :
- If $M^{\prime}=M_{1}^{\prime} M_{2}$ and $M^{\prime \prime}=M_{1}^{\prime \prime} M_{2}$ with $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$ and $M_{1} \rightarrow_{\beta} M_{1}^{\prime \prime}$. Then by induction hypothesis, there exists $N_{1}$ such that $M_{1}^{\prime} \rightarrow_{\beta}^{\star} N_{1}$ and $M_{1}^{\prime \prime} \rightarrow{ }_{\beta}^{\star} N_{1}$. Let $N$ be $N_{1} M_{2}$. Then $M^{\prime} \rightarrow_{\beta}^{\star} N$ and $M^{\prime \prime} \rightarrow_{\beta}^{\star} N$.
- If $M^{\prime}=M_{1} M_{2}^{\prime}$ and $M^{\prime \prime}=M_{1} M_{2}^{\prime \prime}$ with $M_{2} \rightarrow_{\beta} M_{2}^{\prime}$ and $M_{2} \rightarrow_{\beta} M_{2}^{\prime \prime}$. The same reasoning as above (but with $M_{2}$ instead of $M_{1}$ ) gives the result.
- If $M^{\prime}=M_{1}^{\prime} M_{2}$ and $M^{\prime \prime}=M_{1} M_{2}^{\prime \prime}$ with $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$ and $M_{2} \rightarrow_{\beta} M_{2}^{\prime \prime}$.

Let $N$ be $M_{1}^{\prime} M_{2}^{\prime \prime}$. Then $M^{\prime} \rightarrow_{\beta} N$ and $M^{\prime \prime} \rightarrow_{\beta} N$

- If $M=\left(\lambda x \cdot M_{0}\right) M_{2}$ and $M^{\prime}=\left(\lambda x \cdot M_{0}^{\prime}\right) M_{2}$ and $M^{\prime \prime}=M_{0}\left[x / M_{2}\right]$ with $M_{0} \rightarrow_{\beta}$ $M_{0}^{\prime}$.
Let $N$ be $M_{0}^{\prime}\left[{ }^{[x /} / M_{2}\right]$. We have that $M^{\prime} \rightarrow_{\beta} N$. Moreover, by the third substitution lemma, we have that $M^{\prime \prime} \rightarrow_{\beta} N$. So the result holds.
- If $M=\left(\lambda x \cdot M_{0}\right) M_{2}$ and $M^{\prime}=\left(\lambda x \cdot M_{0}\right) M_{2}^{\prime}$ and $M^{\prime \prime}=M_{0}\left[x / M_{2}\right]$ with $M_{2} \rightarrow_{\beta}$ $M_{2}^{\prime}$.
Let $N$ be $M_{0}\left[x / M_{2}^{\prime}\right]$. Then, we have $M^{\prime} \rightarrow_{\beta} N$. By the first substitution lemma, we have that $M^{\prime \prime} \rightarrow_{\beta}^{\star} N$ and so the result holds.

In all possible cases, we have shown that there exists $N$ such that $M^{\prime} \rightarrow_{\beta}^{\star} N$ and $M^{\prime \prime} \rightarrow_{\beta}^{\star} N$.

By induction principle, the result holds.

## First Substitution Lemma

Show that if $M, N \in \Lambda$ and $N \rightarrow \beta N^{\prime}$ then $M[x / N] \rightarrow_{\beta}^{\star} M\left[{ }^{x} / N^{\prime}\right]$.

## Proof:

We show this by structural induction on the term $M$.

- If $M$ is a variable $z$, there are two cases:
- Either $z=x$ :

In this case, $M[x / N]=N \rightarrow{ }_{\beta} N^{\prime}=M\left[x / N^{\prime}\right]$ and so the claim holds.

- Or $z=y \neq x$

In this case, $M[x / N]=y=M\left[x / N^{\wedge}\right]$ and we have $y \rightarrow_{\beta}^{\star} y$ and the claim also holds.

- If $M$ is an abstraction $\lambda y \cdot M^{\prime}$ (we can choose $y$ such that $y \neq x$ and $y \notin \operatorname{fv}(N) \cup f v\left(N^{\prime}\right)$ by $\alpha$-conversion):
By induction hypothesis, $M^{\prime}\left[{ }^{x} / N\right] \rightarrow_{\beta}^{\star} M^{\prime}\left[x / N^{\prime}\right]$ and so $\lambda y .\left(M^{\prime}[x / N]\right) \rightarrow_{\beta}^{\star} \lambda y .\left(M^{\prime}\left[{ }^{x} / N^{\prime}\right]\right)$.
Now, $M[x / N]=\lambda y .\left(M^{\prime}[x / N]\right)$ because $x \neq y$ and $y \notin \mathrm{fv}(N) \cup \mathrm{fv}\left(N^{\prime}\right)$ and $M\left[x / N^{\prime}\right]=$ $\lambda y .\left(M^{\prime}\left[x / N^{\prime}\right]\right)$ for the same reason.
So, $M[x / N] \rightarrow_{\beta}^{\star} M\left[{ }^{x} / N^{\prime}\right]$.
- If $M$ is an application $M_{1} M_{2}$ :

By induction hypothesis, $M_{1}[x / N] \rightarrow{ }_{\beta}^{\star} M_{1}\left[x / N^{\prime}\right]$ and $M_{2}[x / N] \rightarrow_{\beta}^{\star} M_{2}\left[x / N^{\prime}\right]$, so $M[x / N]=$ $M_{1}[x / N] M_{2}[x / N] \rightarrow_{\beta}^{\star} M_{1}\left[x / N^{\prime}\right] M_{2}\left[x / N^{\prime}\right]=M\left[x / N^{\prime}\right]$.

We conclude that, by induction principle, the claim holds.

## Second Substitution Lemma

Show that if $M, N, P \in \Lambda, x \notin \mathrm{fv}(P)$ and $x \neq y$ then $M\left[{ }^{x} / N\right][y / P]=M[y / P]\left[x / N\left[y^{[ } / P\right]\right]$.

## Proof:

By induction on $M$.

- If $M$ is a variable $z$, there are three cases:

$$
-z=x
$$

Then, $M[x / N][y / P]=N[y / P]$ and $M[y / P]\left[x / N\left[y^{[y]}\right]=M\left[x / N\left[y /{ }^{y}\right]\right]=N[y / P]\right.$.
$-z=y$
Then, $M[x / N]\left[{ }^{y} / P\right]=M\left[{ }^{y} / P\right]=P$ and $M[y / P]\left[x / N\left[{ }^{[y} / P\right]\right]=P[x / N[y / P]]=P$ since $x \notin \mathrm{fv}(P)$.
$-z \neq x, z \neq y$
Then $M[x / N]\left[{ }^{y} / P\right]=M$ and $M\left[{ }^{y} / P\right]\left[{ }^{x} / N\left[{ }^{y} / P\right]\right]=M$.

- If $M$ is an abstraction $\lambda z . M^{\prime}$ with $z \neq x, z \neq y, z \notin \mathrm{fv}(N) \cup \mathrm{fv}(P)$ (possible by $\alpha$-conversion):
Then $M[x / N]\left[{ }^{y} / P\right]=\lambda z .\left(M^{\prime}[x / N]\left[{ }^{y} / P\right]\right)$.
By induction hypothesis, $M^{\prime}[x / N]\left[{ }^{y} / /_{P}\right]=M^{\prime}\left[y^{y} / P\right]\left[x / N\left[y_{P}\right]\right]$. Moreover, $M\left[{ }^{y} / P\right]\left[x / N\left[{ }^{y} /_{P}\right]\right]=$ $\lambda z .\left(M^{\prime}[y / P]\left[x / N\left[{ }^{[y / P]}\right]\right.\right.$. So, $M\left[{ }^{x} / N\right][y / P]=M\left[{ }^{y} / P\right]\left[x / N\left[y /{ }^{y}\right]\right]$.
- If $M$ is an application $M_{1} M_{2}$ :

We apply the induction hypothesis on $M_{1}$ and $M_{2}$ and we obtain the result.
By induction principle, the result holds.

## Third Substitution Lemma

Show that if $M, N \in \Lambda$ and $M \rightarrow_{\beta} M^{\prime}$ then $M\left[{ }^{x} / N\right] \rightarrow_{\beta} M^{\prime}\left[{ }^{[ } /{ }_{N}\right]$.

## Proof:

By induction on $M$.

- If $M$ is a variable $z$, then $M$ is a $\beta$-normal form and the result trivially holds.
- If $M=\lambda z . M_{1}$ with $z \neq x$ and $z \notin \mathrm{fv}(N)$ :

Then $M^{\prime}=\lambda z . M_{1}^{\prime}$ with $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$. We have $M\left[{ }^{x} / N\right]=\lambda z .\left(M_{1}\left[{ }^{x} /{ }_{N}\right]\right)$. By induction hypothesis, $M_{1}[x / N] \rightarrow_{\beta} M_{1}^{\prime}[x / N]$ so $\lambda z .\left(M_{1}\left[{ }^{x} / N\right]\right) \rightarrow_{\beta} \lambda z .\left(M_{1}^{\prime}\left[{ }^{x} / N\right]\right)$. But $\lambda z .\left(M_{1}^{\prime}\left[{ }^{x} / N\right]\right)=M^{\prime}\left[{ }^{x} / N\right]$. So $M[x / N] \rightarrow_{\beta} M^{\prime}\left[{ }^{x} / N\right]$.

- If $M=M_{1} M_{2}$, there are several cases:
$-M^{\prime}=M_{1}^{\prime} M_{2}$ with $M_{1} \rightarrow M_{1}^{\prime}$. By induction hypothesis $M_{1}[x / N] \rightarrow_{\beta} M_{1}^{\prime}[x / N]$ so $M\left[{ }^{x} / N\right] \rightarrow_{\beta} M^{\prime}\left[{ }^{x} / N\right]$.
- $M^{\prime}=M_{1} M_{2}^{\prime}$ with $M_{2} \rightarrow M_{2}^{\prime}$. Same reasoning as above.
$-M=\left(\lambda z \cdot M_{0}\right) M_{2}($ with $z \neq x$ and $z \notin \mathrm{fv}(N))$ and $M^{\prime}=M_{0}\left[z / M_{2}\right]$.
We have $M[x / N]=\left(\lambda z .\left(M_{0}[x / N]\right)\right) M_{2}[x / N]$ which $\beta$-reduces to $M_{0}[x / N]\left[z / M_{2}[x / N]\right]$. By the second substitution lemma, we have that $M^{\prime}[x / N]=M_{0}\left[z / M_{2}\right]\left[{ }^{x} / N\right]=$ $M_{0}\left[{ }^{x} / N\right]\left[{ }^{z} / M_{2}[x / N]\right.$. So, we have $M\left[{ }^{x} / N\right] \rightarrow_{\beta} M^{\prime}\left[{ }^{x} / N\right]$.

By induction principle, the result holds.

