Local confluence of the λ -calculus

We will show today that the λ -calculus is locally confluent (it is actually confluent but this is another story).

Local confluence

Show that if $M \in \Lambda$, $M \to_{\beta} M'$ and $M \to_{\beta} M''$ then there exists $N \in \Lambda$ such that $M' \to_{\beta}^{\star} N$ and $M'' \to_{\beta}^{\star} N$.

First Substitution Lemma

Show that if $M, N \in \Lambda$ and $N \to_{\beta} N'$ then $M \begin{bmatrix} x/N \end{bmatrix} \to_{\beta}^{\star} M \begin{bmatrix} x/N' \end{bmatrix}$.

Second Substitution Lemma

Show that if $M, N, P \in \Lambda$, $x \notin \text{fv}(P)$ and $x \neq y$ then M[x/N][y/P] = M[y/P][x/N[y/P]].

Third Substitution Lemma

Show that if $M, N \in \Lambda$ and $M \to_{\beta} M'$ then $M[x/N] \to_{\beta} M'[x/N]$.