
Concurrency Exercise: Elastic Buffer December 3, 2003

1 Chaotic elasticity

The elastic buffer presented in the course has a bad property from an implementation
point of view: it can happen that the number of empty cells in the buffer grow even if no
new element is added to the buffer. Could you see why ?

2 Controlling elasticity

We present now a solution to the problem that you have to implement in Scala using Pilib.

A buffer is modeled as a sequence of independent processes which can be of the four
following types:

• Put: a process at the beginning of the sequence that can accept new items and create
buffer cells for them.

• Cell(x): a cell of the buffer containing an item.

• End: a process that closes the sequence.

• Get(x): a process that can output x.

The expected behavior of the buffer is fully described by the following three rewriting
rules:

Put
in(x)−−−→ Put _ Cell(x)

Cell(x) _ End τ−→ Get(x)

Get(x)
out〈x〉−−−−→ End

If a sub-sequence of the buffer matches the left-hand side of a rule it can be rewritten
in the corresponding instance of the left-hand side.

The following rewriting sequence represents a possible execution of the buffer. For
clarity the matching sub-sequences have been underlined.

Put _ End
in(1)−−−→ Put _ Cell(1) _ End
in(2)−−−→ Put _ Cell(2) _ Cell(1) _ End

τ−→ Put _ Cell(2) _ Get(1)
out〈1〉−−−−→ Put _ Cell(2) _ End

τ−→ Put _ Get(2)
out〈2〉−−−−→ Put _ End

3 Written exercise

How could you convince someone that your implementation actually models an unbounded
buffer ? Is it equivalent to the implementation presented in the course ? Try to prove it.
Write answers for these two questions.



4 Hints for the implementation

Recursive channels To implement the removal of a cell we need recursive channels,
i.e. channels that can carry channels of the same type.

For instance, the declaration for the type of channels that can carry a pair consisting
of an integer and a channel of the same type is:

class Channel extends Chan[Pair[int, Channel]];

A typical output on such a channel a will look like this:

a(Pair(2, a)) ∗ . . .

And a typical input will be :

a ∗ { case Pair(x, y) => . . . }

Observing channels Now for observing a channel a you can attach to it a function
which will be applied to the transmitted value each time a communication takes place
along this channel. No other communication can take place before the observation function
has completed. Example:

a.attach(x => System.out.println(”a:” + x));


