
Concurrency Series 2 November 5, 2003

Various evaluation strategies for the lambda calculus have been de�ned in the course
using the concepts of substitution and evaluation context. These de�nitions are very well
suited for reasoning but say nothing on how these strategies can be e�ectively implemented.
The goal of this series is to give more computational de�nitions for the call-by-value and
call-by-name strategies and to complete the �le lambdaCalculus-partial.scala (acces-
sible from the course page) that implements them.

Call-by-value

The idea is to use the concepts of environment and closure instead of those of evaluation
context and substitution. Informally, an environment is a �nite map from variables to
values and a closure is a function together with an environment that de�nes values for the
free variables of the function. A value is the result of computing a lambda term, it can be
a constant or a closure.

Terms

s, t, u ::= c Constant

x Variable

λx.t Abstraction

t u Application

Values

v, w ::= c Constant

〈λx.t, E〉 Closure

Environment

E ::= ε Empty

E, x 7→ v Binding

Now we de�ne, using inference rules, the evaluation of a lambda term t to a value v in
a environment E, that we write E ` t ⇒ v.

• A constant is already evaluated:

Const
E ` c ⇒ c

• A variable evaluates to the value it is bound to in the environment:

Var
E ` x ⇒ E(x)

• An abstraction evaluates to a closure that stores the current environment:

Abstr
E ` λx.t ⇒ 〈λx.t, E〉

• To evaluate an application (t u), evaluate �rst the function part t to a closure, then
evaluate the argument part u and �nally evaluates the body t′ of the function in its
environment E′ extended with a new binding corresponding to the argument passing:

App
E ` t ⇒ 〈λx.t′, E′〉 E ` u ⇒ v E′, x 7→ v ` t′ ⇒ w

E ` t u ⇒ w

Adapt this formalization to the call-by-name lambda calculus and implement both strate-

gies in Scala.


