
Concurrency Week 14 - Semaphores February 4, 2004

The goal of the exercise is to let you implement two different versions of semaphores
in Scala (using Pilib) and convince yourselves that they are equivalent, by translating
them in π-calculus and using the ABC tool.

1 Implementations

In both implementations we represent a semaphore by an object with two methods: get
and release. The idea is that a client process will call the method get before entering its
critical section and call the method release when exiting its critical section, in order to
assure mutual exclusion. Furthermore we want a counting semaphore (an earlier release
can not unlock a later get) with non-blocking release.

For convenience we use the class Signal as defined in the course 8:

class Signal extends Chan[Unit] with {
def send = write(());
def receive = read;

}

First implementation

The first implementation uses two signals g (get) and r (release) which are used to syn-
chronize calls to methods get and release.

• When invoked, methods get and release are waiting for the right to return by send-
ing their corresponding signal.

• There is an external process Sched with two states which will schedule the methods
of the semaphore. It can loop in its initial state by repeatedly receiving r or go, by
receiving g, to a state where it can only accept r to return in its initial state.

Second implementation

The second implementation uses two signals a (available) and na (non available) and
regards a state of the semaphore as a “soup” of signals.

• A call to get in presence of the signal a in the soup will consume it, add the signal
na in the soup and return.

• A call to release in presence of the signal a will consume it, add the signal a and
return.

• A call to release in presence of the signal na will consume it, add the signal a and
return.

Remark: we add a signal s to the the soup by performing

spawn<s.send>

Q1: Write both implementations in Scala using Pilib and test them quickly

2 Testing equivalence using the bisimulation checker

Now we would like to prove that the two implementations are equivalent by showing
that their translations to the π-calculus are bisimilar.

The standard way of translating an object with methods mi to the π-calculus is to de-
fine one recursive agent per method and put them in parallel as in the following schema:

...
M_i = m_i(done).(M_i | Body_i)
...
O = (M_1 | ... | M_n)

When a process wants to call method mi it sends on channel m1 a channel done and
waits on this channel. The body of the method returns to the caller by sending the result
on this channel. Such a channel is called a continuation.

Q2: Translate both implementations in π-calculus in the format of the ABC tool.

Q3: Try to check that the two resulting π-processes are bisimilar using ABC. What happens ?

The problem is that both implementations are infinite state.

Q4: Could you explain why ?

In such a case the tool can loop forever. The fact that checking does not terminate is a
good sign but not really convincing...

3 Getting finite processes

So we will try to work with finite processes. There are essentially two solutions:

• Either keeping the implementations as they are and testing explicit use of the semaphores
by a same process which will call only a finite number of times the methods get and
release.

• Or modifying the implementations in order to limit the number of times we can
call methods get and release, and testing directly the new implementations (hint:
instead of using only one agent for each method use a finite family of agents in-
dexed by a integer).

Q5: Implement in Scala and test in ABC both of these techniques.

