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Abstract

In this session, we propose you to model a problem in π-calculus and
use the ABC to solve some instances of the problem.

1 Original Problem (parallel game)

n players (with n ≥ 3) are arranged in a circle. Among them n − 1 coins are
distributed. At each stage in the game those players with more than one coin
give one to each neighbour. Show that the game terminates.

2 Studied Problem (sequential game)

n players (with n ≥ 3) are arranged in a circle. Among them n − 1 coins are
distributed. At each stage in the game, a randomly chosen player with more
than one coin gives one coin to each of his neighbour. Show that the game
terminates.
We represent a configuration of the game with a tuple of n integers (c1, . . . , cn)
where ci is the number of coins the player i owns.

example: Here follows a possible trace of the sequential game with initial
configuration (2, 2, 0, 0, 0, 1).

(2, 2, 0, 0, 0, 1) → (0, 3, 0, 0, 0, 2) → (1, 3, 0, 0, 1, 0) → (2, 1, 1, 0, 1, 0)
→ (0, 2, 1, 0, 1, 1) → (1, 0, 2, 0, 1, 1) → (1, 1, 0, 1, 1, 1)

3 Modeling the problem

We want to model the problem in π-calculus. The idea is to represent each
player with one agent Player and to link them together in order to represent a
game.
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3.1 Hardcoding the coins

To simplify, we first decide to encode the number of coins into the name of the
agents. So, instead of having only one agent Player, we have a family of agents
Playern where n is the number of coins the player has at current time.

Each agent communicates on two channels: left and right. A player uses
the channel left to communicate with the player on his left and the channel
right to communicate with the player on his right.

Here is the ABC code for Playern when n = 0 or n = 1:

agent Player_0(left,right) = left.Player_1(left,right) \
+ right.Player_1(left,right)

agent Player_1(left,right) = left.Player_2(left,right) \
+ right.Player_2(left,right)

Could you give the code for Player2? More generally, what is the body of
Playern when n ≥ 2?

What is the problem with hardcoding the number of coins in the name of
the agents?

3.2 Church encoding

Now we have seen the general scheme for encoding a player, we want to model
fully the behaviour of a player. To achieve this goal, we represent a player by
an integer (Church encoded) and an agent that manages this integer.

First, we start from the standard unary encoding of integers in the π-calculus.

agent Zero(l) = l(z,s).’z.0
agent Succ(l,n) = l(z,s).’s<n>.0

You may have noticed that these integers are not persistent. Try to change
your definitions in order to have almost persistent integers (without using un-
guarded recursion). The idea is to see the integer 0 located at l as a server that
listen on the channel l and if it receives two names z and s, then he sends a
signal to z and loop. Try to adapt this idea to the case of the successor and
change your definitions in ABC.

Now you have defined these two base agents, define an agent Ge2(n,true,false)
that tests whether the integer located at n is greater than or equal to 2 or not.
If the integer located at n is greater than or equal to 2, then your agent should
send on the channel true the location of the predecessor of the predecessor of
this integer and otherwise, it should send a signal on the channel false.

agent Ge2(n,true,false) = ??

Now that all the material is ready, define the agent Player(left,right,n)
parametrised by the two channels left and right and the location n of the
integer that encodes the number of coins the player owns. Here is the start of
your answer:
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agent Player(left,right,n) = left.(??)
+ right.(??)
+ (^caseTrue,caseFalse) \

( Ge2(n,caseTrue,caseFalse) \
| ( caseFalse.(??) \
+ caseTrue(n).(??)))

3.3 A game

Now that the agent that represents players is defined, give an agent representing
the configuration (2, 0, 0) (to ease this, define an agent One(l) and an agent
Two(l))

agent One(l) = (^k)(Succ(l,k) | Zero(k))
agent Two(l) = (^k)(Succ(l,k) | One(k))

What is the general form of a configuration of the game?

agent Game = ...

3.4 Termination

3.4.1 Infinite computation

Give a closed process Inf that behaves like:
Inf

τ→ Inf
τ→ · · · τ→ Inf

τ→ Inf
τ→ · · ·

3.4.2 Solving a particular game

The system that represents a game configuration is a closed process. Thus, it
can only evolve by performing internal transitions.

How would you model the fact that all reductions of the (sequential) game
terminate? (think of the meaning to be bisimilar to Inf, to simulate Inf or to
be simulated by Inf)

Try your guess with ABC with a particular initial configuration.

3.4.3 Fixing a problem in players

A possible problem with the definition of the agent Player is that even if a
player has less than 2 coins, it can perform some internal computation (test if
he has more or less than 2 coins) and loops on itself (do nothing since he has
less than 2 coins).

The idea to fix this “problem” is to have 2 agents to represent a player. One
is a normal player, and one is a lazy player. The normal player acts exactly
as above but instead of looping on himself when he has less than 2 coins, he
becomes a lazy player. Thus, a lazy player should represent only a player with
less than 2 coins and then he only listen to his neighbours for receiving a coin
but do not test if he has less or more than 2 coins.

Modify your agent Player and define an agent LazyPlayer.
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agent Player(left,right,n) = left.(??) \
+ right.(??) \
+ (^caseTrue,caseFalse) \

( Ge2(n,caseTrue,caseFalse) \
| ( caseFalse.LazyPlayer(left,right,n) \
+ caseTrue(n).(??)))

agent LazyPlayer(left,right,n) = left.(??) \
+ right.(??)

Retry to solve question 3.4.2.
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