
Concurrency: Languages,
Programming and Theory

– From Pi to Java and Back –

Session 8 – Dec 10th, 2003

Martin Odersky, Nikolay Mihaylov

EPFL-LAMP

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.1/33

From Pi to Java and Back

� CCS and π-Calculus are established formalisms for the
specification and study of concurrent systems.

� When it comes to programming, most concurrent systems
are written using a thread library with semaphores,
monitors, etc.

� What is the relationship between the two idioms?

� We will answer that by
• encoding imperative synchronization constructs in

π-calculus
• implementing π-calculus using traditional threads (that’s

what pilib does).

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.2/33

From Java to Pi

What follows are encodings of

� Semaphores

� Monitors

� Readers/writers locks as used in databases

in pi calculus.

To keep the presentation simpler, we actually use pilib instead of

π-calculus as target language.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.3/33

Preliminaries: Signals

� All communication in pilib works over channels.

� An action without parameters as in CCS is modeled as a
channel over which unit values () are sent.

� This can be expressed more directly by a Signal, defined as
follows.

class Signal extends Chan [unit] {
def send () = write (());

def receive = read;

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.4/33

Semaphores

� A semaphore implements two operations, get and release.

� “Critical regions” of processes are enclosed in calls to first
get, then release of a semaphore.

� Between those two calls, a process is said to own a
semaphore.

� The semaphore implementation ensures that at most one
thread can own a semaphore at any given time.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.5/33

A Semaphore Implementation

Here is an implementation of a semaphore, which uses a signal
for synchronization.

class Semaphore {
private val busy = new Signal;

def get () = busy.send ();

def release () = spawn < busy.receive >;

release ()

}

Usage:

val s = new Semaphore;

s.get (); ...; s.release ();

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.6/33

Another Semaphore Implementation

Here is another implementation, which implements the
synchronization policy in a recursive process.

class Semaphore {
private val busy = new Signal;

private val free = new Signal;

def get () = busy.send ();

def release () = free.send ();

private def sema : unit = { busy.receive; free.receive; sema }
spawn < sema >

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.7/33

Binary and Counting Semaphores

� Question: In both semaphore implementations, what
happens if there is a release without preceding get?

val s = new Semaphore;

s.release (); // ?

� Two major possibilities:
• The release should be forgotten, i.e.

val s = new Semaphore;

s.release (); s.get (); s.get (); // 2nd get blocks

• The release should enable another subsequent get, i.e.
val s = new Semaphore;

s.release (); s.get (); s.get () // 2nd get continues

� The first behavior is called a binary semaphore, the second
a counting semaphore.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.8/33

Monitors

� A monitor encapsulates one or more procedures that need
to be executed mutually exclusively.

� Monitors also offer a way to wait for a certain condition or to
signal that a condition is established.

� Mutual exclusion can be implemented by a semaphore.

� However, waiting on conditions and mutual exclusion are
not independent, since a waiting process has to release the
monitor (to allow some other process to establish the
condition).

� We now explain monitors in detail, using the Java
implementation as example.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.9/33

Monitors in Java

� A monitor in Java is represented by the synchronized
language construct and the following three methods of
java.lang.Object.
void notify () Wakes up a single thread that is waiting on

this object’s monitor.
void notifyAll () Wakes up all threads that are waiting on

this object’s monitor.
void wait () Causes current thread to wait until another

thread invokes the notify () method or the
notifyAll () method for this object.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.10/33

� The synchronized construct is written as follows:
synchronized (mobj) { block }

where mobj is a monitor and block is a sequence of
statements that is executed under mutual exclusion.

� If the whole method body should be a synchronized block,
synchronized can be used as a method modifier. The
monitor is then, either the this object (for instance methods)
or the class object (for static methods).

� Java treats every object as a potential monitor.

� The thread that has entered a synchronized method or
block is said to have obtained a lock on the monitor.

� Every thread entering a synchronized section sees the
effect of all previous state transitions controlled by the same
lock. Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.11/33

Monitors in Scala

Monitors in Scala are almost the same as in Java. There are
only two differences.

1. Not every Scala object is a monitor. Monitor operations are
available on objects of classes which inherit from
scala.Monitor.

2. Instead of a synchronized language construct or modifier
there is a predefined method of the same name in class
Monitor.

class Monitor {
def synchronized [a] (def block : a): a;

def await (def cond : boolean): unit;

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.12/33

Usage Example

Here is an example how synchronized is used in Scala.

class Counter extends Monitor {
private var x = 0;

def increment () = synchronized { x = x + 1; }
def decrement () = synchronized { x = x − 1; }
def value = synchronized { x }

}

Question: Why, if at all, is the use of synchronized in the definition

of value necessary?

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.13/33

Usage Example (2)

As an example that also uses conditions, here is a counter
which can never go negative.

class NonNegCounter extends Monitor {
private var x = 0;

def increment () = synchronized {
x = x + 1;

if (x == 1) notify ();

}
def decrement () = synchronized {

while (x == 0) { wait (); }
x = x − 1;

}
def value = synchronized { x }

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.14/33

� The while−wait idiom is so common, and in fact–mandatory,
that it is encapsulated in a separate method in class Monitor.

def await (def cond : boolean): unit =

while (!cond) wait ();

� Testing the condition before waiting ensures the liveness of
the program.

� Testing the condition after waiting ensures the safety of the
program.

Question: Why not testing the condition before/after waiting will

violate the corresponding property?

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.15/33

� With await, the counter example can be written more
concisely as follows.

class NonNegCounter extends Monitor {
private var x = 0;

def increment () = synchronized {
x = x + 1;

if (x == 1) notify ();

}
def decrement () = synchronized {

await (x != 0);

x = x − 1;

}
def value = synchronized { x }

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.16/33

Another Example: Bounded Buffer

Here is the implementation of a class for bounded buffers.

class Buffer [a] (capacity : int) extends Monitor {
var in = 0, out = 0;

def size = synchronized { in − out }
val elems = new Array [a] (capacity);

def put (x : a) = synchronized {
await (size < capacity);

elems (in % capacity) = x;

if (size == 0) notify ();

in = in + 1;

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.17/33

def get : a = synchronized {
await (size > 0);

val x = elems (out % capacity);

if (size == capacity) notify ();

out = out + 1;

x

}
}

Question: Is this implementation correct?

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.18/33

Coding Monitors in PiLib

� We now show how monitors can be implemented in pilib.

� In reality, it’s the other way around – pilib is implemented
using Java’s monitor concept.

� But the present encoding is interesting since it gives an
alternative account of monitors as higher-level
synchronization constructs.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.19/33

� The encoding uses two internal data structures
• A lock to guarantee mutual exclusion
• A list of waiting processes to be re-executed on a notify

operation.

class JavaMonitor {

private val lock = new Semaphore;

private var waiting : List [Signal] = List ();

The synchronized implementation is straightforward:

def synchronized [a] (def block : a): a = {
lock.get (); val result = block; lock.release (); result

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.20/33

The Wait operation releases the monitor lock and waits for a
private signal which is appended to the waiting list.

def Wait () = {
val s = new Signal;

waiting = waiting ::: [s];

lock.release ();

s.receive;

lock.get ();

}

(to avoid a conflict with Java’s wait method, we have written Wait

in upper case.)

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.21/33

The Notify operation wakes up the first process on the waiting
list and removes the entry from the list.

def Notify () =

if (!waiting.isEmpty) {
waiting.head.send ();

waiting = waiting.tail;

}

The NotifyAll operation does the same to all processes on the
list.

def NotifyAll () =

while (!waiting.isEmpty) {
waiting.head.send ();

waiting = waiting.tail;

}
Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.22/33

A Limitation

� There is one aspect where the encoding of Java’s monitors
in pilib is not faithful.

� In Java, a thread owning a monitor is allowed to enter
another synchronized block on the same monitor.

� Question: Using the pilib implementation of monitors and
given the class:

class Counter2 extends Counter {
def updown () = synchronized { increment (); decrement (); }

}

what is the effect of (new Counter2).updown ()?

� The Java behavior can be modeled in pilib only if one
introduces process identifiers (which changes the
signatures of operations).

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.23/33

Readers/Writers Locks

� A more complex form of synchronization distinguishes
between readers which access a common resource without
modifying it and writers which can both access and modify
it.

� To synchronize readers and writers we need to implement
operations startRead, startWrite, endRead, endWrite, such
that:
• there can be multiple concurrent readers, and
• there can only be one writer at one time.
• In addition it should be guaranteed that pending write

requests are not delayed indefinitely (provided the
process scheduler is fair).

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.24/33

Readers/Writers in π-calculus

� The idea is to model the operations by signals sr (start
read), er (end read), sw (start write) and ew (end write).

� These signals are coordinated by process RWn, where the
n subscript indicates the number of readers in the system.

RW0 = sr.RW1 + sw.ew.RW0

RWn = sr.RWn+1 + er.RWn−1 (n > 0)

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.25/33

Readers/Writers in PiLib

We package the π-calculus program in a Scala class as follows.

class ReadWriteLock {
private val sr = new Signal, er = new Signal,

sw = new Signal, ew = new Signal;

def startRead () = sr.send ();

def startWrite () = sw.send ();

def endRead () = er.send ();

def endWrite () = ew.send ();

private def RW (n : int): unit =

if (n == 0)

choice { sr ∗ (x ⇒ RW (1)) + sw ∗ (x ⇒ ew.receive; RW (0)) }
else

choice { sr ∗ (x ⇒ RW (n+1)) + er ∗ (x ⇒ RW (n−1)) }
spawn < RW (0) >;

} Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.26/33

Question:

� Assume that the system is very busy: At any one time there
are always processes that want to read and other
processes that want to write.

� Assume that processes are scheduled randomly.

� What is the probability that a reader or a writer will never get
the resource?

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.27/33

Avoiding Starvation

� How can we avoid the potential starvation of writers?

� An idea is to introduce another signal ww, which stands for
“want write’ ”.

� A writer process will always execute ww, sw, and ew in that
order.

� We then add queue process Q, which sequentializes sr and
ww requests.

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.28/33

� A system with a process P using a readers/writers lock is
then composed from

P | Q | RW ′

0

where Q and RW ′ are given as follows.

RW ′

0 = sr′.RW ′

1 + sw′.ew.RW ′

0

RW ′

n
= sr′.RW ′

n+1 + er.RW ′

n−1 (n > 0)

Q = sr.sr′.Q + ww.sw′.sw.Q

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.29/33

Readers/Writers Locks using Monitors

� Here is an alternative implementation of a readers/writers
lock which uses a monitor.

� There are two counter variables.
• One counts the number of active (i.e. reading or writing)

processes.
• The other counts the number of active or waiting writers.

class ReadWriteLock extends Monitor {

private var nactive : int = 0;

private var nwriters : int = 0;

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.30/33

A reader can start only if there are no writers active or waiting:

def startRead () = synchronized {
await (nwriters == 0);

nactive = nactive + 1;

}

A writer can start only if there are no active processes:

def startWrite () = synchronized {
nwriters = nwriters + 1;

await (nactive == 0);

nactive = 1;

}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.31/33

Operations endRead and endWrite decrement counters and
possibly notify waiting processes.

def endRead () = synchronized {
nactive = nactive − 1;

if (nactive == 0) notifyAll ();

}

def endWrite () = synchronized {
nwriters = nwriters − 1;

nactive = 0;

notifyAll ();

}
}

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.32/33

Question:

� Assume that the system is very busy: At any one time there
are always processes that want to read and other
processes that want to write.

� Assume that processes are scheduled randomly.

� What is the probability that a reader or a writer will never get
the resource?

� Is this acceptable?

� If not, how can it be fixed?

Concurrency: Languages, Programming and Theory – From Pi to Java and Back – Session 8 – Dec 10th, 2003 – (produced on March 4, 2004) – p.33/33

	From Pi to Java and Back
	From Java to Pi
	Preliminaries: Signals
	Semaphores
	A Semaphore Implementation
	Another Semaphore Implementation
	Binary and Counting Semaphores
	Monitors
	Monitors in Java
	
	Monitors in Scala
	Usage Example
	Usage Example (2)
	
	
	Another Example: Bounded Buffer
	
	Coding Monitors in PiLib
	
	
	
	A Limitation
	Readers/Writers Locks
	Readers/Writers in $pi $-calculus
	Readers/Writers in PiLib
	
	Avoiding Starvation
	
	Readers/Writers Locks using Monitors
	
	
	

