
Concurrency: Theory, Languages and
Programming

– From CCS to PiLib –

Session 5 – November 19, 2003

Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.1/8

Pilib

� Pilib is a library, which allows one to use CCS primitives in a
Scala program.

� CCS constructs are modelled as Scala functions.

� Their implementation is based on Java’s threads.

� Pilib’s functions are implemented in two modules:
• concurrency for general thread management.
• pilib for CCS actions and sums.

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.2/8

An Example

Here is a two-place buffer implementation using Pilib.

import concurrency; // make available Pilib functions

import pilib; // without qualification.

module bufferExample with {
def Buffer [a] (in : Chan [a], out : Chan [a]): unit = {

def B0 : unit = { val x = in.read; B1 (x) }
def B1 (x : a): unit = choice {

out (x) ∗ (B0) +
in ∗ (y ⇒ B2 (x, y))

}
def B2 (x : a, y : a): unit = { out.write (x); B1 (y) }
B0 // initial state

}
}

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.3/8

Explanations

� Chan is the type of CCS names (or: channels).

� Chan takes a type parameter a, which determines the type
of values that can be read from and written to the channel.

� The Buffer process is modelled by a recrusive Scala
function, nested functions B0, B1, B2.

� Each nested function represents a buffer state (0 = empty, 1
= half full, 2 = full).

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.4/8

A Buffer Client

val random = new java.util.Random ();

def Producer (n : int, l : Chan [String]): unit = {
sleep (1 + random.nextInt (1000));

l.write (”object ” + n);

System.out.println (”Producer gave ” + n);

Producer (n + 1, l)

}

def Consumer (r : Chan [String]): unit = {
sleep (1 + random.nextInt (1000));

val a = r.read;

System.out.println (”Consumer took ” + a);

Consumer (r)

}

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.5/8

def main (args : Array [String]): unit = {
val in = new Chan [String];

val out = new Chan [String];

spawn < Producer (0, in) | Consumer (out) | Buffer (in, out) >

}

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.6/8

Covered CCS Syntax

Action prefix π ::= x(y) receive y along x

| x̄〈y〉 send y along x

Guarded process G ::= π.P

Process P ::=
∑

i
Gi summation

| P1 | P2 composition
| νa.P restriction
| A〈x1, ..., xn〉 agent

Agent definition D ::= A(x1, ..., xn) = P

Term t ::= D1, ..., Dn ` P

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.7/8

From CCS to Pilib

Guarded process

Jx(y).P K = x * (y => JP K)
Jx̄〈v〉.P K = x(v) * (JP K)

Process

Jπ1.P1 + ... + πn.PnK = choice (Jπ1.P1K + ... + Jπn.PnK)
JP1 | . . . | PnK = spawn < JP1K | ... | JPnK >

Jνa.P K = { val a = new Chan[T]; JP K }
JA〈x1, ..., xn〉K = A(x1, ..., xn)

Agent definition

JA(x1, ..., xn) = P K = def A(x1, ..., xn): unit = JP K
Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.8/8

	 Pilib
	 An Example
	Explanations
	A Buffer Client
	
	Covered CCS Syntax
	From CCS to Pilib

