Concurrency: Theory, Languages and
Programming

— From CCS to PiLib —
Session 5 — November 19, 2003

Martin Odersky

EPFL-LAMP



Pilib

(1 Pilib is a library, which allows one to use CCS primitives in a
Scala program.

[1 CCS constructs are modelled as Scala functions.
[J Their implementation is based on Java’s threads.

[J Pilib’s functions are implemented in two modules:
e concurrency for general thread management.
e pilib for CCS actions and sums.

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.2/8



An Example

Here Is a two-place buffer implementation using Pilib.

iImport concurrency; // make available Pilib functions
import pilib; /[ without qualification.

module bufferExample with {
def Buffer[a](in: Chan[a], out: Chan[a]): unit= {
def BO: unit = { val x = in.read; B1(x) }
def B1(x: a): unit = choice {
out(x) x (BO) +
in* (y = B2(X,Yy))
h
def B2(x: a, y: a): unit = { out.write (x); B1(y) }
BO //initial state

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.3/8



1 O

Explanations

Chan is the type of CCS names (or: channels).

Chan takes a type parameter a, which determines the type
of values that can be read from and written to the channel.

The Buffer process is modelled by a recrusive Scala
function, nested functions BO, B1, B2.

Each nested function represents a buffer state (0 = empty, 1
= half full, 2 = full).

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.4/8



A Buffer Client

val random = new java.util.Random ();

def Producer (n: int, |I: Chan [String]): unit = {
sleep (1 + random.nextint (1000 ) );
l.write ("object ” + n);
System.out.println ("Producer gave ” + n);
Producer (n + 1, )

}

def Consumer (r: Chan [String]): unit = {
sleep (1 + random.nextint (1000));
val a =r.read;

System.out.println ("Consumer took ” + a);
Consumer (r)

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.5/8



def main (args: Array [String]): unit = {
val in = new Chan [String |,
val out = new Chan[String ];
spawn < Producer (0, in) | Consumer (out) | Buffer (in, out) >

}

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.6/8



Covered CCS Syntax

Action prefix T = z(y) receive y along =
| Z(y) send y along x
Guarded process G = w.P
Process P = > G summation
P | P composition
va.P restriction
A{x1, .., Tp) agent
Agent definiion D == A(xy,...,z,) =P
Term t == D{,....D,FP

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.7/8



From CCS to Pilib

Guarded process
[z(y).P]
[7(v).P]

Process

[m1.PL+ . + 70 Py =
[Pr] - | P
[va.P]

[A{x1, ..., x0) ] —

Agent definition
[A(zy,....,xp) =P] =

x* (y => [P])
z(v) * ([P])

choice ( [m.P] + ... +

{ val a = new Chan|[T],
A(x1, ..., Tn)

[Pl )
spawn < [Pi] | ... | [Py]

1P}

def A(xy,...,xy): UNit = [ P]

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.8/8



	 Pilib 
	 An Example 
	Explanations
	A Buffer Client
	
	Covered CCS Syntax
	From CCS to Pilib

