Concurrency: Theory, Languages and Programming

- From CCS to PiLib -

Session 5 - November 19, 2003

Uwe Nestman \& Martin Odersky

EPFL-LAMP

Value-Passing: Syntax

```
\(\mathcal{N}\) channels \(a, b, c \ldots\)
\(\mathcal{V}\) values \(v, w\)
\(\mathcal{X}\) variables \(x, y, z\)
\(\mathcal{A}\) actions \(\quad \mu::=\bar{a}\langle v\rangle \quad|\quad a(x) \quad| \quad \tau\)
```

"negative" actions $\bar{a}\langle v\rangle$: send name v over channel a.
"positive" actions $a(x)$: receive any value, say v, over channel a and "bind the result" to variable x.

Binding results in substitution $[y / x]$ of the formal parameter x by the actual parameter v.
polyadic communication $\bar{a}\langle\vec{v}\rangle$ and $a(\vec{x})$ (with \vec{x} pairwise different) transmit many values at a time.

Value-Passing: Semantics I

directly: via LTS

$$
\begin{aligned}
& \text { TAU: } \tau . P \xrightarrow{\tau} P \quad \text { OUT: } \bar{a}\langle v\rangle . P \xrightarrow{\bar{a}\langle v\rangle} P \\
& \text { INP: } \frac{v \in \mathcal{V}}{a(x) . P \xrightarrow{a v}[v / x] P} \\
& \text { COMM: } \frac{P \xrightarrow{\bar{a}\langle v\rangle} P^{\prime} \quad Q \xrightarrow{a v} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}
\end{aligned}
$$

Value-Passing: Semantics II

indirectly: via translation

$$
\begin{array}{ccl}
\llbracket \rrbracket: \mathcal{P} \mathrm{VP} & \rightarrow & \mathcal{P} \\
\hline \llbracket \bar{a}\langle v\rangle . P \rrbracket & \stackrel{\text { def }}{=} & \overline{a_{v}} \llbracket P \rrbracket \\
\llbracket a(x) . P \rrbracket & \stackrel{\text { def }}{=} & \sum_{v \in \mathcal{V}} a_{v} \cdot \llbracket[v / x] P \rrbracket \\
& \vdots & \\
\llbracket P_{1} \mid P_{2} \rrbracket & \stackrel{\text { def }}{=} & \llbracket P_{1} \rrbracket \mid \llbracket P_{2} \rrbracket \\
& \vdots & \\
\llbracket A\langle\vec{v}\rangle \rrbracket & \stackrel{\text { def }}{=} & A\langle\vec{v}\rangle
\end{array}
$$

Buffers in New Clothes ...

$$
\begin{aligned}
\mathcal{N} & :=\{\text { in, out }\} \\
\mathcal{V} & :=\{0,1\} \\
s & \in\{\epsilon\} \cup \mathcal{V} \\
\vec{a} & :=\text { in, out }
\end{aligned}
$$

Buff $_{s}^{(1)} \quad: \quad$ 1-place buffer containing s
Buff $_{e}^{(1)}(\vec{a}) \stackrel{\text { def }}{=} \operatorname{in}(x)$.Buff ${ }_{x}^{(1)}\langle\vec{a}\rangle$
Buff $_{v}^{(1)}(\vec{a}) \stackrel{\text { def }}{=} \overline{o u t}\langle v\rangle$.Buff $f_{\epsilon}^{(1)}\langle\vec{a}\rangle$
\square Observe how much nicer name/value-passing is :-)

Bound and Free Names

$\square(\boldsymbol{\nu} x) P$ and $a(x) . P$ bind x in P
$\square x$ occurs bound in P, if it occurs in a subterm $(\boldsymbol{\nu} x) Q$ or $a(x) . P$ of P
$\square x$ occurs free in P, if it occurs without enclosing $(\boldsymbol{\nu} x) Q$ or $a(x) . P$ in P
\square Note the use of parentheses (round brackets).
\square Define $\mathrm{fn}(P)$ and $\mathrm{bn}(P)$ inductively on \mathcal{P} (sets of free/bound names of P) ...

Scheduler, Informally [Mi199, § 3.6]

\square a set of processes $P_{i}, 1 \leq i \leq n$ is to be scheduled
$\square P_{i}$ starts by signalling $\overline{a_{i}}$ to the scheduler
$\square P_{i}$ completes by signalling $\overline{b_{i}}$ to the scheduler
\square each P_{i} must not run two tasks at a time
\square tasks of different P_{i} may run at the same time
$\square a_{i}$ are required to occur cyclically (initially, 1 starts)
\square for each i, a_{i} and b_{i} must occur cyclically
\square maximal "progress":
the scheduling must permit any of the buttons to be pressed at any time provided (1) and (2) are not violated.

Formal "Implementation" [§ 7.3]

$$
\begin{aligned}
& A(a, b, c, d) \stackrel{\text { def }}{=} \\
&= a . c . b . \bar{d} . A \\
& \hline A(a, b, c, d) \stackrel{\text { def }}{=} \\
& a . C\langle a, b, c, d\rangle \\
& C(a, b, c, d) \stackrel{\text { def }}{=} c . B\langle a, b, c, d\rangle \\
& B(a, b, c, d) \stackrel{\text { def }}{=} \\
& D . D\langle a, b, c, d\rangle \\
& D(a, b, c, d) \stackrel{\text { def }}{=} \\
& d
\end{aligned} \cdot A\langle a, b, c, d\rangle .
$$

