
Concurrency: Theory, Languages and
Programming

– From CCS to PiLib –

Session 5 – November 19, 2003

Uwe Nestman & Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.1/8

Value-Passing: Syntax

N channels a, b, c . . .

V values v, w

X variables x, y, z

A actions µ ::= a〈v〉
∣

∣ a(x)
∣

∣ τ

“negative” actions a〈v〉: send name v over channel a.

“positive” actions a(x): receive any value, say v, over channel a
and “bind the result” to variable x.

Binding results in substitution [v/x]
of the formal parameter x by the actual parameter v.

polyadic communication a〈~v〉 and a(~x) (with ~x pairwise different)
transmit many values at a time.

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.2/8

Value-Passing: Semantics I

directly: via LTS

. . . TAU: τ.P
τ

−−→ P OUT: a〈v〉.P
a〈v〉

−−−−→ P

INP:
v ∈ V

a(x).P
av

−−−→ [v/x]P

COMM:
P

a〈v〉
−−−−→ P ′ Q

av

−−−→ Q′

P | Q
τ

−−→ P ′ | Q′

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.3/8

Value-Passing: Semantics II

indirectly: via translation

[[]] : PVP → P

[[a〈v〉.P]]
def
= av.[[P]]

[[a(x).P]]
def
=

∑

v∈V
av.[[[

v/x]P]]

...

[[P1 |P2]]
def
= [[P1]] | [[P2]]
...

[[A〈~v 〉]]
def
= A〈~v 〉

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.4/8

Buffers in New Clothes . . .

N := { in, out }

V := { 0, 1 }

s ∈ {ε} ∪ V

~a := in, out

Buff
(1)
s : 1-place buffer containing s

Buff
(1)
ε (~a)

def
= in(x).Buff

(1)
x 〈~a 〉

Buff
(1)
v (~a)

def
= out〈v〉.Buff

(1)
ε 〈~a 〉

� Observe how much nicer name/value-passing is :-)

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.5/8

Bound and Free Names

� (νx) P and a(x).P bind x in P

� x occurs bound in P , if it occurs
in a subterm (νx) Q or a(x).P of P

� x occurs free in P , if it occurs
without enclosing (νx) Q or a(x).P in P

� Note the use of parentheses (round brackets).

� Define fn(P) and bn(P) inductively on P
(sets of free/bound names of P) . . .

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.6/8

Scheduler, Informally [Mil99, § 3.6]

� a set of processes Pi, 1 ≤ i ≤ n is to be scheduled

� Pi starts by signalling ai to the scheduler

� Pi completes by signalling bi to the scheduler

� each Pi must not run two tasks at a time

� tasks of different Pi may run at the same time

� ai are required to occur cyclically (initially, 1 starts)

� for each i, ai and bi must occur cyclically

� maximal “progress”:
the scheduling must permit any of the buttons to be pressed
at any time provided (1) and (2) are not violated.

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.7/8

Formal “Implementation” [§ 7.3]

A(a, b, c, d)
def
= a.c.b.d.A

A(a, b, c, d)
def
= a.C〈 a, b, c, d 〉

C(a, b, c, d)
def
= c.B〈 a, b, c, d 〉

B(a, b, c, d)
def
= b.D〈 a, b, c, d 〉

D(a, b, c, d)
def
= d.A〈 a, b, c, d 〉

~a := a1 . . . , an, ~b := b1 . . . , bn ~c := c1 . . . , cn

Ai(~a,~b,~c)
def
= A〈 ai, bi, ci, ci	n1 〉

Bi(~a,~b,~c)
def
= B〈 ai, bi, ci, ci	n1 〉

Ci(~a,~b,~c)
def
= C〈 ai, bi, ci, ci	n1 〉

Di(~a,~b,~c)
def
= D〈 ai, bi, ci, ci	n1 〉

S(~a,~b)
def
= (ν~c)

(

A1〈~a,~b,~c 〉|D2〈~a,~b,~c 〉| · · · |Dn〈~a,~b,~c 〉
)

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 19, 2003 – (produced on March 4, 2004, 18:46) – p.8/8

	 Value-Passing: Syntax
	 Value-Passing: Semantics I
	 Value-Passing: Semantics II
	 Buffers in New Clothes etc
	 Bound and Free Names
	 Scheduler, Informally [Mil99, S ~3.6]
	 Formal ``Implementation'' [S ~7.3]

