Concurrency: Theory, Languages and
Programming

— From CCS to PiLib —
Session 5 — November 19, 2003

Uwe Nestman & Martin Odersky

EPFL-LAMP

Value-Passing: Syntax

N channels a.,b,c...

) values v, W

X variables z,vy, 2

A actions p u= av) | a(z) | T

“negative” actions a(v): send name v over channel a.

“positive” actions a(x): receive any value, say v, over channel a
and “bind the result” to variable .

Binding results in substitution [V/,]
of the formal parameter x by the actual parameter v.

polyadic communication a(#) and a(x) (with Z pairwise different)
transmit many values at a time.

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.2/8

Value-Passing: Semantics |

directly: via LTS

a(v)

TAU: 7. P — P ouT-a(vy.P —— P

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.3/8

Value-Passing: Semantics Il

Indirectly: via translation

[1:P® — P
a

[[a(:v)-P]] Y an[[%%]P]

veyY

[P P2] = [A]l][FP2]

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.4/8

Buffers in New Clothes ...

N .= {in,out }
V = {0,1}
s e {ejuVy
a = in, out
Buffgl) ; 1-place buffer containing s
Buft (@) ¥ in(2).Bufft) (@)
Bufti) (@) ¥ out(v).Bufft) (@)

[1 Observe how much nicer name/value-passing Is :-)

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.5/8

Bound and Free Names

O (vx) P|land a(x).P|bind ziIn P

(1 2 occurs bound In P, if it occurs
in a subterm (vx) @ |or a(x).P|of P

(1 x occurs free In P, If it occurs
without enclosing (vx) Q| or a(z).P|In P

[J Note the use of parentheses (round brackets).

(1 Define fn(P) and bn(P) inductively on P
(sets of free/bound names of P) ...

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.6/8

O 0o O o O 0o

Scheduler, Informally [Mil99, § 3.6]

a set of processes P;,1 < < n s to be scheduled
P; starts by signalling @; to the scheduler

P; completes by signalling b; to the scheduler

each P, must not run two tasks at a time

tasks of different P, may run at the same time

a; are required to occur cyclically (initially, 1 starts)
for each i, a; and b; must occur cyclically

maximal “progress”:

the scheduling must permit any of the buttons to be pressed
at any time provided (1) and (2) are not violated.

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.7/8

Formal “Implementation” [§ 7.3]

A(a,b,e,d) = a.cbhbdA
A(a,b,c,d) o a.C(a,b,c,d)
C(a,b,c,d) o c.B({a,b,c,d)
B(a,bc,d) ¥ b.D(a,bcd)
D(a,b,c,d) o d.Ala,b,c,d)
Q:=a1....an, b:=bi....,by C:=c1...,cn
Ai(@,b,¢) i A(ag, by, i, i1)
B;i(a,b,¢) i B(a;, bi, c;, cie,n)
Ci(a,b,¢) i C{ag, b, ci, cionn)
Di(a,g,é) def D{a;, b, c;, cio, 1)
S(a@b) € () (Aab,c)Dy(a,b,é) - |Duld,b,c))

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 19, 2003 — (produced on March 4, 2004, 18:46) — p.8/8

	 Value-Passing: Syntax
	 Value-Passing: Semantics I
	 Value-Passing: Semantics II
	 Buffers in New Clothes etc
	 Bound and Free Names
	 Scheduler, Informally [Mil99, S ~3.6]
	 Formal ``Implementation'' [S ~7.3]

