Concurrency: Theory, Languages and Programming

– From CCS to PiLib – Session 5 – November 19, 2003

Uwe Nestman & Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming - From CCS to PiLib - Session 5 - November 19, 2003 - (produced on March 4, 2004, 18:46) - p.1/8

Value-Passing: Syntax

 $\begin{array}{c|cccc} \mathcal{N} & \text{channels} & a, b, c \dots \\ \mathcal{V} & \text{values} & v, w \\ \mathcal{X} & \text{variables} & x, y, z \\ \mathcal{A} & \text{actions} & \mu & ::= & \overline{a} \langle v \rangle & | & a(x) & | & \tau \end{array}$

"negative" actions $\overline{a}\langle v \rangle$: send name v over channel a.

"positive" actions a(x): receive any value, say v, over channel aand "bind the result" to variable x.

Binding results in *substitution* [v/x] of the formal parameter x by the actual parameter v.

polyadic communication $\overline{a}\langle \vec{v} \rangle$ and $a(\vec{x})$ (with \vec{x} pairwise different) transmit many values at a time.

Value-Passing: Semantics I

directly: via LTS

. . .

TAU:
$$\tau.P \xrightarrow{\tau} P$$
 OUT: $\overline{a}\langle v \rangle.P \xrightarrow{\overline{a}\langle v \rangle} P$
INP: $\frac{v \in \mathcal{V}}{a(x).P \xrightarrow{av} [v/x]P}$
COMM: $\frac{P \xrightarrow{\overline{a}\langle v \rangle} P' \qquad Q \xrightarrow{av} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'}$

Value-Passing: Semantics II

indirectly: via translation

-

$\llbracket \ \rrbracket \ : \ \mathcal{P}^{VP}$	\rightarrow	\mathcal{P}
$[\![\overline{a}\langle v\rangle.P]\!]$	$\stackrel{\mathrm{def}}{=}$	$\overline{a_v}.\llbracket P \rrbracket$
$\llbracket a(x).P \rrbracket$	$\stackrel{\mathrm{def}}{=}$	$\sum_{v \in \mathcal{V}} a_v . \llbracket \begin{bmatrix} v/_x \end{bmatrix} P \rrbracket$
	:	
$\llbracket P_1 \mid P_2 \rrbracket$	$\stackrel{\text{def}}{=}$	$\llbracket P_1 \rrbracket \llbracket P_2 \rrbracket$
	÷	
$[\![A\langle \vec{v} \rangle]\!]$	$\stackrel{\text{def}}{=}$	$A\langle \vec{v} \rangle$

Buffers in New Clothes ...

${\mathcal N}$:=	{ in, out }
${\mathcal V}$:=	$\{ 0, 1 \}$
S	\in	$\{\epsilon\} \cup \mathcal{V}$
\vec{a}	:=	in, out
$Buff_s^{(1)}$	•	1-place buffer containing s
$Buff_\epsilon^{(1)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{in}(x).\operatorname{Buff}_{x}^{(1)}\langle \vec{a} \rangle$
$Buff_v^{(1)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$\overline{out}\langle v\rangle.Buff_{\epsilon}^{(1)}\langle \vec{a} \rangle$

☐ Observe how much nicer name/value-passing is :-)

Bound and Free Names

$$\Box$$
 ($\boldsymbol{\nu} x$) P and $a(x).P$ bind x in P

- $\Box x \text{ occurs$ **bound**in*P* $, if it occurs in a subterm <math>(\nu x) Q \text{ or } a(x) . P \text{ of } P$
 - $\exists x \text{ occurs } \mathbf{free} \text{ in } P, \text{ if it occurs} \\ \text{without enclosing } (\boldsymbol{\nu} x) Q \text{ or } a(x).P \text{ in } P \\ \end{cases}$
- \Box Note the use of parentheses (round brackets).
- □ Define fn(P) and bn(P) inductively on \mathcal{P} (sets of free/bound names of P)...

Scheduler, Informally [Mil99, § 3.6]

- \square a set of processes $P_i, 1 \le i \le n$ is to be scheduled
- \Box P_i starts by signalling $\overline{a_i}$ to the scheduler
- \Box P_i completes by signalling $\overline{b_i}$ to the scheduler
- \Box each P_i must not run two tasks at a time
- I tasks of different P_i may run at the same time
- $\exists a_i \text{ are required to occur cyclically (initially, 1 starts)}$
- \Box for each *i*, *a_i* and *b_i* must occur cyclically
- □ maximal "progress":

the scheduling must permit any of the buttons to be pressed at any time provided (1) and (2) are not violated.

Formal "Implementation" [§ 7.3]

$$\begin{array}{rcl} A(a,b,c,d) & \stackrel{\mathrm{def}}{=} & a.c.b.\overline{d}.A \\ \hline A(a,b,c,d) & \stackrel{\mathrm{def}}{=} & a.C\langle a,b,c,d \rangle \\ C(a,b,c,d) & \stackrel{\mathrm{def}}{=} & c.B\langle a,b,c,d \rangle \\ B(a,b,c,d) & \stackrel{\mathrm{def}}{=} & b.D\langle a,b,c,d \rangle \\ \hline D(a,b,c,d) & \stackrel{\mathrm{def}}{=} & \overline{d}.A\langle a,b,c,d \rangle \\ \hline \overrightarrow{a} := a_1 \dots, a_n, & \overrightarrow{b} := b_1 \dots, b_n & \overrightarrow{c} := c_1 \dots, c_n \\ \hline A_i(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) & \stackrel{\mathrm{def}}{=} & A\langle a_i,b_i,c_i,c_{i\ominus_n1} \rangle \\ B_i(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) & \stackrel{\mathrm{def}}{=} & B\langle a_i,b_i,c_i,c_{i\ominus_n1} \rangle \\ \hline C_i(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) & \stackrel{\mathrm{def}}{=} & D\langle a_i,b_i,c_i,c_{i\ominus_n1} \rangle \\ \hline D_i(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}) & \stackrel{\mathrm{def}}{=} & D\langle a_i,b_i,c_i,c_{i\ominus_n1} \rangle \\ \hline S(\overrightarrow{a},\overrightarrow{b}) & \stackrel{\mathrm{def}}{=} & (\mathbf{\nu}\overrightarrow{c}) \left(A_1\langle \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} \rangle | D_2\langle \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} \rangle | \dots | D_n\langle \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} \rangle \right) \end{array}$$