Concurrency: Languages, Programming and Theory – CCS –

Session 4 – November 12, 2003

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory - CCS - Session 4 - November 12, 2003 - (produced on March 4, 2004, 18:46) - p.1/24

Plan

\Box Session 4

- from λ -calculus to CCS: towards concurrency
- Structural Operational Semantics (SOS)
- \Box Session 5
 - examples ...
 - ... using the Scala-library
- \Box Session 6
 - from CCS to π -calculus: pragmatics, syntax, semantics
 - more SOS
- \Box Session 7
 - from π -calculus to Java ... and back again
 - ... using the Scala-library

Foundational Calculi ?

We are interested in the foundations of programming. We use "foundational" mini-languages as vehicles that guide our intuition and style of expression. When does such a mini-language deserve to be called a "calculus"?

□ few primitives

- mathematically tractable
 - calculate computational steps
 - notion of equivalence
- □ *computationally complete* (Turing, URM, GOTO, ...)
- □ "*naturally complete*": design of programming languages
 - easily "extensible" via encodings
 - higher-order principles

λ -Calculus

□ **Syntax** (for example) a BNF-grammar generates the set of expressions ...

$$M, N ::= x \mid \lambda x. N \mid MN$$

Semantics (for example) a set of inference rules generates (and controls) the possible reductions of terms

$$(\beta) \ \overline{(\lambda x.N)}M \to [M/x]N$$
(FUN)
$$\frac{M \to M'}{MN \to M'N}$$
(ARG)
$$\frac{N \to N'}{MN \to MN'}$$

Concurrency?

 \exists parallelism: ≥ 1 independent threads of control

 \Box distribution:

- logical concurrency
- physical concurrency
- failures
- synchronization / cooperation / coordination communication

 \implies foundational calculus for (just) concurrency ?

Functional vs Concurrent

\Box functional / reduction systems:

- reduce a term to value form
- only the resulting value is interesting
- observation after termination
- concurrent / reactive systems:
 - describe the possible interactions *during* evaluation
 - the resulting value is *not* (necessarily) interesting
 - observation through and during interaction

The notion of *interaction* (*communication*) is important !

Hoare (CSP) and Milner (CCS) proposed handshake-communication as <u>the</u> primitive form of interaction.

Functional vs Concurrent

	functional	concurrent	
determinism	possible	?	
confluence	wanted/needed	?	
termination	?	?	
foundation	λ	CCS, π , (Petri nets,)	
ff-language	ML, Scala, …	Pict, Join, Scala,	

CCS

- $\begin{array}{lll} \mathcal{I} & \text{process identifiers} & A, B \dots \\ \mathcal{N} & \text{names} & a, b, c \dots \\ \overline{\mathcal{N}} & \text{co-names} & \overline{a}, \overline{b}, \overline{c} \dots \\ \mathcal{L} & \text{labels (buttons)} & \text{metavariables } \lambda \dots \in \mathcal{L} := \mathcal{N} \cup \overline{\mathcal{N}} \\ \mathcal{A} & \text{actions} & \text{metavariables } \mu, \beta \dots \in \mathcal{L} \cup \{\tau\} \end{array}$
- □ visible/external actions: labels
- \Box invisible/internal actions: au
- \Box finite sequences \vec{a} for names $a_1 \dots, a_n$ (not co-names!)
- □ parametric processes $A\langle a, c \rangle$ with name parameters (neither co-names, nor labels, ...)

Sequential Process Expressions (I)

<u>Definition</u>: The sets \mathcal{P}^{seq} and \mathcal{M}^{seq} of sequential process expressions is defined (precisely) by the following BNF-syntax:

$$P ::= A \langle \vec{a} \rangle \mid M$$
$$M ::= \mathbf{0} \mid \mu P \mid M + M$$

We use $P, Q, P_i \dots$ to stand for *process expressions*, while M, M_i always stand for *choices* or *summations*. We also use the abbreviation

$$\sum_{i\in I}\mu_i.P_i:=\mu_1.P_1+\ldots+\mu_n.P_n$$

where *I* is the finite indexing set $\{1...,n\}$. Note that then the order of summands is not fixed.

Sequential Process Expressions (II)

 \Box each process identifier A is assumed to have a **defining equation** (note the brackets)

$$A(\vec{a}) \stackrel{\text{def}}{=} M$$

where *M* is a summation, \vec{a} is (or: includes) fn(*M*). Note: \vec{a} does only include *names* ($\in \mathcal{N}$), not co-names! \square fn(*P*): the set of all of the (free) names of *P*

- $\Box \ A \langle \vec{b} \rangle$ means the same as $[\vec{b}/_{\vec{a}}]M$
- □ **substitution** $[\vec{b}/_{\vec{a}}]P$ (for matching \vec{b} and \vec{a}) replaces *all* occurrences of a_i in *P* by b_i .

Free Names, Inductively

<u>Definition</u>: The set fn(P) is defined inductively by:

$\operatorname{fn}(\mu)$	$\stackrel{\mathrm{def}}{=}$	$\begin{cases} \{b\} & \text{if } \mu = b \\ \{b\} & \text{if } \mu = \overline{b} \\ \emptyset & \text{if } \mu = \tau \end{cases}$
$\operatorname{fn}(0)$	$\stackrel{\mathrm{def}}{=}$	Ø
$\operatorname{fn}(\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$\mathrm{fn}(\mu) \cup \mathrm{fn}(P)$
$\operatorname{fn}(M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{fn}(M_1) \cup \operatorname{fn}(M_2)$
$\operatorname{fn}(A\langle \vec{a} \rangle)$	$\stackrel{\mathrm{def}}{=}$	$\{\vec{a}\}$

Substitution, Inductively

Definition:

$[b/_c]\mu$	$\stackrel{\mathrm{def}}{=}$	$\begin{cases} b & \text{if } \mu = c \\ \overline{b} & \text{if } \mu = \overline{c} \\ \mu & \text{otherwise} \end{cases}$
[b/c] 0	$\stackrel{\mathrm{def}}{=}$	0
$[b/c](\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$[b/c]\mu.[b/c]P$
$[b/c](M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$[b/c]M_1 + [b/c]M_2$
$[^{b}\!/_{c}](A\langle \vec{a} \rangle)$	$\stackrel{\mathrm{def}}{=}$	$A\langle [b/c]\vec{a}\rangle$

Simultaneous Substitution, Inductively

Definition:

Let $\vec{b} = b_1, b_n$ and $\vec{c} = c_1, c_n$.				
$[\vec{b}/\vec{c}]\mu$	$\stackrel{\mathrm{def}}{=}$	$\begin{cases} b_i & \text{if } \exists 1 \leq i \leq n \text{ with } \mu = c_i \\ \overline{b_i} & \text{if } \exists 1 \leq i \leq n \text{ with } \mu = \overline{c_i} \end{cases}$		
$[\ddot{c}]\mu$		$\begin{cases} o_i & \text{if } \exists 1 \leq i \leq n \text{ with } \mu = c_i \\ \dots & \text{otherwise} \end{cases}$		
$[ec{b}/ec{c}]0$	$\stackrel{\mathrm{def}}{=}$	0		
$[ec{b}/ec{c}](\mu.P)$	$\stackrel{\mathrm{def}}{=}$	$[\vec{b}/\!_{\vec{c}}]\mu.[\vec{b}/\!_{\vec{c}}]P$		
$[\vec{b}/\vec{c}](M_1 + M_2)$	$\stackrel{\mathrm{def}}{=}$	$[\vec{b}/\vec{c}]M_1 + [\vec{b}/\vec{c}]M_2$		
$[\vec{b}/\vec{c}](A\langle \vec{a} \rangle)$	$\stackrel{\mathrm{def}}{=}$	$A\langle [\vec{b}/\vec{c}]\vec{a} \rangle$		

Example: 1-Place Binary Buffer

$$\begin{array}{rcl} \mathcal{N} & \coloneqq & \{ \operatorname{in}_i, \operatorname{out}_i \mid i \in \{0, 1\} \} \\ s & \in & \{\epsilon, 0, 1\} \\ \vec{a} & \coloneqq & \operatorname{in}_0, \operatorname{in}_1, \operatorname{out}_0, \operatorname{out}_1 \\ & \operatorname{Buff}_s^{(1)} & \vdots & \operatorname{1-place} \operatorname{buffer} \operatorname{containing} s \\ & \operatorname{Buff}_i^{(1)}(\vec{a}) & \stackrel{\mathrm{def}}{=} & \sum_{i \in \{0, 1\}} \operatorname{in}_i \cdot \operatorname{Buff}_i^{(1)}\langle \vec{a} \rangle \\ & \operatorname{Buff}_i^{(1)}(\vec{a}) & \stackrel{\mathrm{def}}{=} & \overline{\operatorname{out}_i} \cdot \operatorname{Buff}^{(1)}\langle \vec{a} \rangle \end{array}$$

Example: 2-Place Binary Buffer

$$\begin{array}{lll} \mathcal{N} & := & \{ \mbox{ in}_i, \mbox{out}_i \mid i \in \{0,1\} \} \\ s & \in & \{\epsilon, 0, 1, 00, 01, 10, 11\} \\ \vec{a} & := & \mbox{ in}_0, \mbox{ in}_1, \mbox{ out}_0, \mbox{ out}_1 \\ \\ \mbox{Buff}_{s}^{(2)} & : & \mbox{ 2-place buffer containing } s \\ \mbox{Buff}_{i}^{(2)}(\vec{a}\,) & \stackrel{\mbox{def}}{=} & \sum_{i \in \{0,1\}} \mbox{ in}_i. \mbox{Buff}_{i}^{(2)} \langle \vec{a}\, \rangle \\ \\ \mbox{Buff}_{i}^{(2)}(\vec{a}\,) & \stackrel{\mbox{def}}{=} & \mbox{ out}_i. \mbox{Buff}_{i}^{(2)} \langle \vec{a}\, \rangle + \sum_{j \in \{0,1\}} \mbox{ in}_j. \mbox{Buff}_{ji}^{(2)} \langle \vec{a}\, \rangle \\ \\ \mbox{Buff}_{ij}^{(2)}(\vec{a}\,) & \stackrel{\mbox{def}}{=} & \mbox{ out}_j. \mbox{Buff}_{i}^{(2)} \langle \vec{a}\, \rangle \\ \end{array}$$

□ modify $\operatorname{Buff}_{s}^{(2)}$ to release values in either order □ write an analogous definition for $\operatorname{Buff}_{s}^{(3)}$...

Labeled Transition Systems

Definition:

An LTS (Q, T) over an action alphabet A:

 \square a set of **states** $\mathcal{Q} = \{q_0, q_1 \dots\}$

 $\square \text{ a ternary transition relation } \mathcal{T} \subseteq (\mathcal{Q} \times \mathcal{A} \times \mathcal{Q})$

A transition $(q, \mu, q') \in \mathcal{T}$ is also written $q \xrightarrow{\mu} q'$.

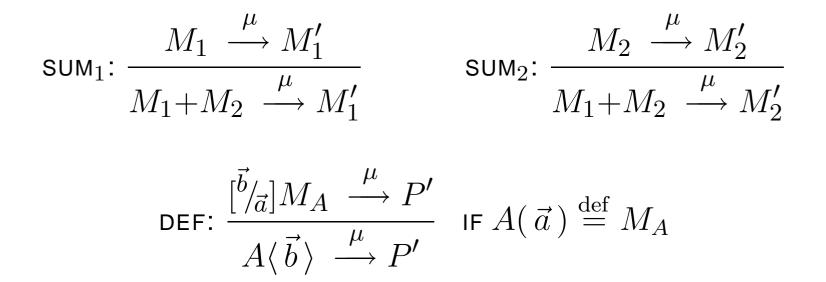
If
$$q \xrightarrow{\mu_1} q_1 \cdots \xrightarrow{\mu_n} q_n$$
 we call q_n a **derivative** of q .

LTSs are automata, but ignoring starting and accepting states. *Transition Graphs* are useful ...

LTS - Sequential Expressions

<u>Definition</u>: The LTS ($\mathcal{P}^{seq}, \mathcal{T}$) of sequential process expressions over \mathcal{A} has \mathcal{P}^{seq} as states, and its transitions \mathcal{T} are precisely generated by the following rules:

pre:
$$\mu.P \stackrel{\mu}{\longrightarrow} P$$



Note that transition under prefix is not allowed/included.

Concurrent Process Expressions (I)

<u>Definition</u>: The set \mathcal{P} of concurrent process expressions is defined (precisely) by the following BNF-syntax:

$$P ::= A \langle \vec{a} \rangle | M | P|P | (\boldsymbol{\nu}a) P$$
$$M ::= \mathbf{0} | \alpha.P | M+M$$

We use P, Q, P_i to stand for process expressions.

- \Box (νa) *P* restricts the scope of *a* to *P*
- \Box (νab) *P* abbreviates (νa) (νb) *P*

Concurrent Process Expressions (II)

precedence: unary binds tighter than binary

$$(\boldsymbol{\nu}a) P \mid Q = ((\boldsymbol{\nu}a) P) \mid Q$$
$$a.P + M = (a.P) + M$$

$$[a_{b}]M_{1} + M_{2} = ([a_{b}]M_{1}) + M_{2}$$

what about:

$$P \mid Q + R \stackrel{?}{=} (P \mid Q) + R$$
$$P \mid Q + R \stackrel{?}{=} P \mid (Q + R)$$

Bound and Free Names

- \Box (νa) *P* binds *a* in *P*
- $\Box \ a \text{ occurs$ **bound** $in } P,$ if it occurs in a subterm $(\nu a) Q \text{ of } P$
- $\Box a \text{ occurs } \mathbf{free} \text{ in } P,$ if it occurs without enclosing $(\boldsymbol{\nu}a) Q$ in P
- □ Define fn(P) and bn(P) inductively on \mathcal{P} (sets of free/bound names of P):
 - $\begin{array}{ll} \operatorname{fn}(P_1|P_2) & \stackrel{\text{def}}{=} & \operatorname{fn}(P_1) \cup \operatorname{fn}(P_2) \\ \operatorname{bn}(P_1|P_2) & \stackrel{\text{def}}{=} & \operatorname{bn}(P_1) \cup \operatorname{bn}(P_2) \end{array}$

$$\begin{array}{ll}
\operatorname{fn}((\boldsymbol{\nu}a) P) & \stackrel{\mathrm{def}}{=} & \operatorname{fn}(P) \setminus \{a\} \\
\operatorname{bn}((\boldsymbol{\nu}a) P) & \stackrel{\mathrm{def}}{=} & \operatorname{bn}(P) \cup \{a\}
\end{array}$$

$\alpha\text{-}\mathbf{Conversion}\ \&\ \mathbf{Substitution}$

□ substitution $[\vec{b}/\vec{a}]P$ (for matching \vec{b} and \vec{a}) replaces all free occurrences of a_i in P by b_i .

 $[b/a](\boldsymbol{\nu}b) \ b.a = ?$

 \Box α -conversion, written $=_{\alpha}$: conflict-free renaming of bound names (no new name-bindings shall be generated)

substitution $[\vec{b}/\vec{a}]P$ (for matching \vec{b} and \vec{a} , where \vec{a} p.w.d.) replaces *all* free occurrences of a_i in *P* by b_i , possibly enforcing α -conversion.

Examples

$$(\boldsymbol{\nu}a) (\overline{a}.\mathbf{0}|b.\mathbf{0}) =_{\alpha} (\boldsymbol{\nu}c) (\overline{c}.\mathbf{0}|b.\mathbf{0})$$
$$=_{\alpha} (\boldsymbol{\nu}b) (\overline{b}.\mathbf{0}|b.\mathbf{0})$$

$$\begin{bmatrix} a_{b} \end{bmatrix} ((\boldsymbol{\nu}b) \,\overline{b}.\mathbf{0} \mid b.\mathbf{0}) =_{\alpha} ((\boldsymbol{\nu}b) \,\overline{a}.\mathbf{0} \mid a.\mathbf{0})$$
$$=_{\alpha} ((\boldsymbol{\nu}b) \,\overline{b}.\mathbf{0} \mid a.\mathbf{0})$$

$$\begin{bmatrix} a \\ b \end{bmatrix} ((\boldsymbol{\nu} a) \,\overline{b}.a.\mathbf{0} \mid b.\mathbf{0}) =_{\alpha} ((\boldsymbol{\nu} a) \,\overline{a}.a.\mathbf{0} \mid a.\mathbf{0})$$
$$=_{\alpha} ((\boldsymbol{\nu} c) \,\overline{a}.c.\mathbf{0} \mid a.\mathbf{0})$$

LTS — Concurrent Expressions

. . .

$$\begin{array}{l} \operatorname{PAR}_{1} : \displaystyle \frac{P_{1} \ \stackrel{\mu}{\longrightarrow} P_{1}'}{P_{1} | P_{2} \ \stackrel{\mu}{\longrightarrow} P_{1}' | P_{2}} & \operatorname{PAR}_{2} : \displaystyle \frac{P_{2} \ \stackrel{\mu}{\longrightarrow} P_{2}'}{P_{1} | P_{2} \ \stackrel{\mu}{\longrightarrow} P_{1} | P_{2}'} \\ \\ \operatorname{REACT} : \displaystyle \frac{P \ \stackrel{\lambda}{\longrightarrow} P' \quad Q \ \stackrel{\overline{\lambda}}{\longrightarrow} Q'}{P | Q \ \stackrel{\overline{\lambda}}{\longrightarrow} P' | Q'} \\ \\ \operatorname{RES} : \displaystyle \frac{P \ \stackrel{\mu}{\longrightarrow} P'}{(\boldsymbol{\nu}a) P \ \stackrel{\mu}{\longrightarrow} (\boldsymbol{\nu}a) P'} & \operatorname{IF} \mu \not\in \{a, \overline{a}\} \\ \\ \operatorname{ALPHA} : \displaystyle \frac{Q \ \stackrel{\mu}{\longrightarrow} Q'}{P \ \stackrel{\mu}{\longrightarrow} P'} & \operatorname{IF} P =_{\alpha} Q \text{ and } P' =_{\alpha} Q' \end{array}$$

Buffers, revisited ...

$$\begin{aligned} \mathcal{N} &:= & \{ \operatorname{in}_{i}, \operatorname{out}_{i}, \mathsf{x}_{i} \mid i \in \{0, 1\} \} \\ \vec{a} &:= & \operatorname{in}_{0}, \operatorname{in}_{1}, \operatorname{out}_{0}, \operatorname{out}_{1} \\ \mathsf{Bluff}^{(2)}(\vec{a}) &\stackrel{\mathrm{def}}{=} & (\boldsymbol{\nu}\mathsf{x}_{0}, \mathsf{x}_{1}) \ (& \mathsf{Buff}^{(1)}\langle \operatorname{in}_{0}, \operatorname{in}_{1}, \mathsf{x}_{0}, \mathsf{x}_{1} \rangle \\ & \quad | & \mathsf{Buff}^{(1)}\langle \mathsf{x}_{0}, \mathsf{x}_{1}, \operatorname{out}_{0}, \operatorname{out}_{1} \rangle) \end{aligned}$$

 \Box compare the behavior (= LTSs) of Buff⁽²⁾ and Bluff⁽²⁾

 \Box regard both as black boxes with "buttons" \vec{a} ...