
Concurrency:
Languages, Programming and Theory

– CCS –

Session 4 – November 12, 2003

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.1/24

Plan

� Session 4
• from λ-calculus to CCS: towards concurrency
• Structural Operational Semantics (SOS)

� Session 5
• examples . . .
• . . . using the Scala-library

� Session 6
• from CCS to π-calculus: pragmatics, syntax, semantics
• more SOS

� Session 7
• from π-calculus to Java . . . and back again
• . . . using the Scala-library

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.2/24

Foundational Calculi ?

We are interested in the foundations of programming.
We use “foundational” mini-languages as vehicles that guide
our intuition and style of expression. When does such a
mini-language deserve to be called a “calculus”?

� few primitives

� mathematically tractable
• calculate computational steps
• notion of equivalence

� computationally complete (Turing, URM, GOTO, . . .)

� “naturally complete”: design of programming languages
• easily “extensible” via encodings
• higher-order principles

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.3/24

λ-Calculus

� Syntax (for example)
a BNF-grammar generates the set of expressions . . .

M,N ::= x
∣

∣ λx.N
∣

∣ MN

� Semantics (for example)
a set of inference rules generates (and controls) the
possible reductions of terms

(β)
(λx.N)M −→ [M/x]N

(FUN)
M −→ M ′

MN −→ M ′N
(ARG)

N −→ N ′

MN −→ MN ′

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.4/24

Concurrency?

� parallelism: ≥ 1 independent threads of control

� distribution:
• logical concurrency
• physical concurrency
• failures

� synchronization / cooperation / coordination
communication

=⇒ foundational calculus for (just) concurrency ?

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.5/24

Functional vs Concurrent

� functional / reduction systems:

• reduce a term to value form
• only the resulting value is interesting
• observation after termination

� concurrent / reactive systems:

• describe the possible interactions during evaluation
• the resulting value is not (necessarily) interesting
• observation through and during interaction

The notion of interaction (communication) is important !

Hoare (CSP) and Milner (CCS) proposed
handshake-communication as the primitive form of interaction.

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.6/24

Functional vs Concurrent

functional concurrent

determinism possible ?
confluence wanted/needed ?
termination ? ?

foundation λ CCS, π, (Petri nets, . . .)
ff-language ML, Scala, . . . Pict, Join, Scala, . . .

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.7/24

CCS

I process identifiers A,B . . .

N names a, b, c . . .

N co-names a, b, c . . .

L labels (buttons) metavariables λ . . . ∈ L := N ∪N

A actions metavariables µ, β . . . ∈ L ∪ {τ}

� visible/external actions: labels

� invisible/internal actions: τ

� finite sequences ~a for names a1 . . . , an (not co-names!)

� parametric processes A〈 a, c 〉 with
name parameters (neither co-names, nor labels, . . .)

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.8/24

Sequential Process Expressions (I)

Definition: The sets Pseq and Mseq of sequential process
expressions is defined (precisely) by the following BNF-syntax:

P ::= A〈~a 〉
∣

∣ M

M ::= 0

∣

∣ µ.P
∣

∣ M + M

We use P,Q, Pi . . . to stand for process expressions,
while M,Mi always stand for choices or summations.
We also use the abbreviation

∑

i∈I

µi.Pi := µ1.P1 + . . . + µn.Pn

where I is the finite indexing set {1 . . . , n}.
Note that then the order of summands is not fixed.

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.9/24

Sequential Process Expressions (II)

� each process identifier A is assumed
to have a defining equation (note the brackets)

A(~a)
def
= M

where M is a summation, ~a is (or: includes) fn(M).
Note: ~a does only include names (∈ N), not co-names!

� fn(P): the set of all of the (free) names of P

� A〈~b 〉 means the same as [
~b/~a]M

� substitution [
~b/~a]P (for matching ~b and ~a)

replaces all occurrences of ai in P by bi.

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.10/24

Free Names, Inductively

Definition: The set fn(P) is defined inductively by:

fn(µ)
def
=











{b} if µ = b

{b} if µ = b̄

∅ if µ = τ

fn(0)
def
= ∅

fn(µ.P)
def
= fn(µ) ∪ fn(P)

fn(M1 + M2)
def
= fn(M1) ∪ fn(M2)

fn(A〈~a 〉)
def
= {~a}

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.11/24

Substitution, Inductively

Definition:

[b/c]µ
def
=











b if µ = c

b if µ = c

µ otherwise

[b/c]0
def
= 0

[b/c](µ.P)
def
= [b/c]µ.[b/c]P

[b/c](M1 + M2)
def
= [b/c]M1 + [b/c]M2

[b/c](A〈~a 〉)
def
= A〈 [b/c]~a 〉

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.12/24

Simultaneous Substitution, Inductively

Definition:

Let ~b = b1 . . . , bn and ~c = c1 . . . , cn.

[
~b/~c]µ

def
=











bi if ∃1≤i≤n with µ = ci

bi if ∃1≤i≤n with µ = ci

. . . otherwise

[
~b/~c]0

def
= 0

[
~b/~c](µ.P)

def
= [

~b/~c]µ.[
~b/~c]P

[
~b/~c](M1 + M2)

def
= [

~b/~c]M1 + [
~b/~c]M2

[
~b/~c](A〈~a 〉)

def
= A〈 [

~b/~c]~a 〉

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.13/24

Example: 1-Place Binary Buffer

N := { ini, outi | i ∈ {0, 1} }

s ∈ {ε, 0, 1}

~a := in0, in1, out0, out1

Buff
(1)
s : 1-place buffer containing s

Buff(1)(~a)
def
=

∑

i∈{0,1} ini.Buff
(1)
i 〈~a 〉

Buff
(1)
i (~a)

def
= outi.Buff(1)〈~a 〉

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.14/24

Example: 2-Place Binary Buffer

N := { ini, outi | i ∈ {0, 1} }

s ∈ {ε, 0, 1, 00, 01, 10, 11}

~a := in0, in1, out0, out1

Buff
(2)
s : 2-place buffer containing s

Buff(2)(~a)
def
=

∑

i∈{0,1} ini.Buff
(2)
i 〈~a 〉

Buff
(2)
i (~a)

def
= outi.Buff(2)〈~a 〉 +

∑

j∈{0,1} inj .Buff
(2)
ji 〈~a 〉

Buff
(2)
ij (~a)

def
= outj .Buff

(2)
i 〈~a 〉

� modify Buff
(2)
s to release values in either order

� write an analogous definition for Buff
(3)
s . . .

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.15/24

Labeled Transition Systems

Definition:
An LTS (Q, T) over an action alphabet A:

� a set of states Q = {q0, q1 . . .}

� a ternary transition relation T ⊆ (Q×A×Q)

A transition (q, µ, q′) ∈ T is also written q
µ

−−→ q′.

If q
µ1

−−−→ q1 · · ·
µn

−−−→ qn we call qn a derivative of q.

LTSs are automata, but ignoring starting and accepting states.
Transition Graphs are useful . . .

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.16/24

LTS - Sequential Expressions

Definition: The LTS (Pseq, T) of sequential process expressions
over A has Pseq as states, and its transitions T are precisely
generated by the following rules:

PRE: µ.P
µ

−−→ P

SUM1:
M1

µ
−−→ M ′

1

M1+M2

µ
−−→ M ′

1

SUM2:
M2

µ
−−→ M ′

2

M1+M2

µ
−−→ M ′

2

DEF:
[
~b/~a]MA

µ
−−→ P ′

A〈~b 〉
µ

−−→ P ′
IF A(~a)

def
= MA

Note that transition under prefix is not allowed/included.
Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.17/24

Concurrent Process Expressions (I)

Definition: The set P of concurrent process expressions is
defined (precisely) by the following BNF-syntax:

P ::= A〈~a 〉
∣

∣ M
∣

∣ P |P
∣

∣ (νa) P

M ::= 0

∣

∣ α.P
∣

∣ M + M

We use P,Q, Pi to stand for process expressions.

� (νa) P restricts the scope of a to P

� (νab) P abbreviates (νa) (νb) P

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.18/24

Concurrent Process Expressions (II)

� precedence: unary binds tighter than binary

(νa) P | Q = ((νa) P) | Q

a.P + M = (a.P) + M

[a/b]M1 + M2 = ([a/b]M1) + M2

� what about:

P |Q + R
?
= (P |Q) + R

P |Q + R
?
= P | (Q + R)

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.19/24

Bound and Free Names

� (νa) P binds a in P

� a occurs bound in P ,
if it occurs in a subterm (νa) Q of P

� a occurs free in P ,
if it occurs without enclosing (νa) Q in P

� Define fn(P) and bn(P) inductively on P
(sets of free/bound names of P):

fn(P1|P2)
def
= fn(P1) ∪ fn(P2)

bn(P1|P2)
def
= bn(P1) ∪ bn(P2)

. . .

fn((νa) P)
def
= fn(P) \ {a}

bn((νa) P)
def
= bn(P) ∪ {a}

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.20/24

α-Conversion & Substitution

� substitution [
~b/~a]P (for matching ~b and ~a)

replaces all free occurrences of ai in P by bi.

[b/a](νb) b.a =?

� α-conversion , written =α:
conflict-free renaming of bound names
(no new name-bindings shall be generated)

� substitution [
~b/~a]P (for matching ~b and ~a, where ~a p.w.d.)

replaces all free occurrences of ai in P by bi,
possibly enforcing α-conversion.

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.21/24

Examples

(νa) (a.0|b.0) =α (νc) (c.0|b.0)

=α (νb) (b.0|b.0)

[a/b]((νb) b.0 | b.0) =α ((νb) a.0 | a.0)

=α ((νb) b.0 | a.0)

[a/b]((νa) b.a.0 | b.0) =α ((νa) a.a.0 | a.0)

=α ((νc) a.c.0 | a.0)

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.22/24

LTS — Concurrent Expressions

. . .
PAR1:

P1

µ
−−→ P ′

1

P1|P2

µ
−−→ P ′

1|P2

PAR2:
P2

µ
−−→ P ′

2

P1|P2

µ
−−→ P1|P

′
2

REACT:
P

λ
−−→ P ′ Q

λ
−−→ Q′

P |Q
τ

−−→ P ′|Q′

RES:
P

µ
−−→ P ′

(νa) P
µ

−−→ (νa) P ′
IF µ 6∈{a, a}

ALPHA:
Q

µ
−−→ Q′

P
µ

−−→ P ′
IF P=αQ AND P ′=αQ′

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.23/24

Buffers, revisited . . .

N := { ini, outi, xi | i ∈ {0, 1} }

~a := in0, in1, out0, out1

Bluff(2)(~a)
def
= (νx0, x1) (Buff(1)〈 in0, in1, x0, x1 〉

| Buff(1)〈 x0, x1, out0, out1 〉)

� compare the behavior (= LTSs) of Buff(2) and Bluff(2)

� regard both as black boxes with “buttons” ~a . . .

Concurrency:Languages, Programming and Theory – CCS – Session 4 – November 12, 2003 – (produced on March 4, 2004, 18:46) – p.24/24

	 Plan
	 Foundational Calculi ?
	 $lambda $-Calculus
	 Concurrency?
	 Functional vs Concurrent
	 Functional vs Concurrent
	 CCS
	 Sequential Process Expressions (I)

	 Sequential Process Expressions (II)

	 Free Names, Inductively
	 Substitution, Inductively
	 Simultaneous Substitution, Inductively
	 Example: 1-Place Binary Buffer
	 Example: 2-Place Binary Buffer
	Labeled Transition Systems
	 LTS - Sequential Expressions
	 Concurrent Process Expressions (I)

	 Concurrent Process Expressions (II)

	 Bound and Free Names
	 $alpha $-Conversion & Substitution
	 Examples
	 LTS --- Concurrent Expressions
	 Buffers, revisited etc

