Concurrency:
Languages, Programming and Theory

— CCS -
Session 4 — November 12, 2003

Uwe Nestmann

EPFL-LAMP

Plan

[1 Session 4
e from A-calculus to CCS: towards concurrency
e Structural Operational Semantics (SOS)

[1] Session 5
e examples...
e ... using the Scala-library

[1 Session 6
e from CCS to n-calculus: pragmatics, syntax, semantics
e more SOS

[1 Session 7
e from w-calculus to Java ... and back again
e ... using the Scala-library

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.2/24

Foundational Calculi ?

We are interested in the foundations of programming.

We use “foundational” mini-languages as vehicles that guide
our intuition and style of expression. When does such a
mini-language deserve to be called a “calculus”?

[1 few primitives

[0 mathematically tractable

e calculate computational steps
e notion of equivalence

[J computationally complete (Turing, URM, GOTO, ...)

1 “naturally complete”. design of programming languages
e easily “extensible” via encodings
e higher-order principles

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.3/24

MA-Calculus

[1 Syntax (for example)
a BNF-grammar generates the set of expressions ...

M,N == z | Xx.N | MN

(1 Semantics (for example)
a set of inference rules generates (and controls) the
possible reductions of terms

()

M — M N — N’

(FUN) , (ARG) ,
MN — M'N MN — MN

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.4/24

Concurrency?

(1 parallelism: > 1 independent threads of control

[distribution:
e logical concurrency
e physical concurrency
e failures

[1 synchronization / cooperation / coordination
communication

— foundational calculus for (just) concurrency ?

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.5/24

Functional vs Concurrent

[1 functional / reduction systems:

e reduce a term to value form
e only the resulting value is interesting
e Observation after termination

[1 concurrent / reactive systems:

e describe the possible interactions during evaluation
e the resulting value is not (necessarily) interesting
e Observation through and during interaction

The notion of interaction (communication) is important !

Hoare (CSP) and Milner (CCS) proposed
handshake-communication as the primitive form of interaction.

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.6/24

Functional vs Concurrent

functional concurrent
determinism possible ?
confluence | wanted/needed ?
termination ? ?
foundation A CCS, 7, (Petri nets, ...)
ff-language | ML, Scala, ... Pict, Join, Scala, ...

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.7/24

CCS

1 process identifiers A, B...

N names a,b,c...

N co-names a, 5, C...

L labels (buttons) metavariables \... € £L: =N UN
A actions metavariables i, 5... € LU {7}

[J visible/external actions: labels
[invisible/internal actions: 7
(] finite sequences a for names a; ..., a, (NOt co-names!)

[1 parametric processes A(a,c) with
name parameters (neither co-names, nor labels, ...)

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.8/24

Sequential Process Expressions (1)

Definition: The sets P4 and M*®¢ of sequential process
expressions is defined (precisely) by the following BNF-syntax:

P == Ala) | M
M == 0 | pwP | M+M
We use P, (), F; ... to stand for process expressions,

while M, M; always stand for choices or summations.
We also use the abbreviation

> wi-Pii= P+ 4 Py
icl

where [Is the finite indexing set {1...,n}.
Note that then the order of summands is not fixed.

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.9/24

Sequential Process Expressions (1)

[1 each process identifier A Is assumed
to have a defining equation (note the brackets)

Ald) ¥ M

where M Is a summation, a Is (or: includes) fn(M).

Note: @ does only include names (¢ N), not co-names!
[fn(P): the set of all of the (free) names of P

—

[0 A(b) means the same as [%}M

[J substitution :%]P (for matching & and @)
replaces all occurrences of a; In P by b;.

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.10/24

Free Names, Inductively

Definition: The set fn(P) is defined inductively by:

(b} ifp=0
fn(p) = b} itu=b
U ifu=r
fn(0) Loy
f (. P) © fn(u) U fn(P)
(M, + M) (M) U (M)

m(A(@) < {a)

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.11/24

Substitution, Inductively

Definition:

b ifu=c
%) © U tu=c

L otherwise
/.0 S
R def b b
/c (:LL-P) — [/c]:u'[/c]P
(M + Ma) LM+ ()Mo

bA(@Y) E A(a)

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.12/24

Simultaneous Substitution, Inductively

Definition:

Letb=1by....b,andc=cy...,cp.

] (b, if I1<i<n with u = ¢;

[/ ey b, ifJ1<i<nwith =75
- otherwise

/40 S

r def r 7

% (. P) = [Yeu. VAP

DMy + M) = DMy + [P Mo

b)) A(Pa)

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.13/24

Example: 1-Place Binary Buffer

N = {in;,out; | i€ {0,1}}
S

e {e0,1}
a ;= Ing, Iny, outy, outy
Buffg1> ; 1-place buffer containing s
Buf (@) = Yicqoq iniBufft) (@)
ut (@) ¥ out;.Buff) ()

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.14/24

Example: 2-Place Binary Buffer

N .= {in;,out; | i€ {0,1}}
; e {e.0,1,00,01,10,11)
a := ing, iny, outy, outy
Buffg2> ; 2-place buffer containing s
Buf (@) = Yicqoq iniBufti (@)
Bufft” (@) € outy.Buft® (@) + e oy ingBuff'; (@)
Buffy, (@) < out;.Buff\" (@)

1 modify Buffff) to release values in either order

(1 write an analogous definition for Buffgg) .

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.15/24

Labeled Transition Systems

Definition:
An LTS (Q,7) over an action alphabet A:

[1 a setof states O ={qo,q1...}

[1 aternary transition relation 7 C (Q x A x Q)

.. : : M
A transition (¢, 1, ¢’) € 7 is also written ¢ — ¢'.

M1 HUn . .
f¢g — ¢1--- — ¢, we call ¢,, a derivative of g.

LTSs are automata, but ignoring starting and accepting states.
Transition Graphs are useful ...

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.16/24

LTS - Sequential Expressions

Definition: The LTS (P*%4, 7T") of sequential process expressions
over A has P54 as states, and its transitions 7 are precisely
generated by the following rules:

e P L p

My o My 5 M
7 SUM9: T
Mi+My — M{ Mi+My — Mé

SUM1.

/
DEF: ||:A(c_i)d§f M 4

Note that transition under prefix is not allowed/included.

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.17/24

Concurrent Process Expressions (I)

Definition: The set P of concurrent process expressions Is
defined (precisely) by the following BNF-syntax:

P:=Alay | M | PP | (voP
M::=0 | aP | M+M

We use P, (), P, to stand for process expressions.

[J (va) P restricts the scope of a to P
[1 (vab) P abbreviates (va) (vb) P

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.18/24

Concurrent Process Expressions (I1)

[1 precedence: unary binds tighter than binary

(va) P Q = ((va)P)|Q
a.P+ M (a.P)+ M

"] M1 + Mo

(%) M7) + Mo

1 what about:
Pl|Q+R
PlQ+R

(P|Q)+ R
Pl(Q+ R)

|~ [~

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.19/24

Bound and Free Names

[J (va) P binds ain P

[J a occurs bound in P,
If it occurs in a subterm (va) @ of P

[J a occurs free in P,
If it occurs without enclosing (va) @ In P

[J Define fn(P) and bn(P) inductively on P

(sets of free/bound names of P):

(P |Py) (P Un(P)

bu(P|Py) ' bn(P)Ubn(P)

fa((va) P) = f(P)\ {a}

bn((va) P) ¥ bn(P)U {a}

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.20/24

a-Conversion & Substitution

[1 substitution [%]P (for matching b and @)
replaces all free occurrences of a; In P by b;.

L] (vb) b.a =7

[1 a-conversion , written =,
conflict-free renaming of bound names
(no new name-bindings shall be generated)

[substitution [%/;] P (for matching b and @, where @ p.w.d.)
replaces all free occurrences of a; In P by b;,
possibly enforcing a-conversion.

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.21/24

Examples

(va) (a.01b.0) =, (vc)(¢.0]b.0)
=« (vb) (b.0/b.0)

9] (vb)b.0]b.0) =, ((vb) ?.O | a.0)
=+ ((vb)b.0|a.0)

) ((va)b.a.0]b.0) =, ((va)@.a0]a0)
=. ((vc)a.c0|a.0)

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.22/24

LTS — Concurrent Expressions

P 5P P 5P
PAR{: " PAR>: "
Pi|Py — P||Ps Pi|Py — Pi|P;
A / X /
P — P Q —
REACT: -
PlQ — P'|Q’
pLp }
RES: m F ué{a,a}
(va) P — (va) P’
oA
ALPHA: « 7 © IF P=,0) anp P'=,0)
P — P

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.23/24

Buffers, revisited . ..

N = {in;,out;,x; | i € {0,1} }
a ;= Ing, Iny, outy, outy
BIuff® (@) X (wxo,x1) (Buff(ing,ing, xo, X1)

| Buff(1)<xo,x1,0Ut070Ut1>)

[compare the behavior (= LTSs) of Buff®?) and Bluff(?)

" =

[] regard both as black boxes with “buttons” a . ..

Concurrency:Languages, Programming and Theory — CCS — Session 4 — November 12, 2003 — (produced on March 4, 2004, 18:46) — p.24/24

	 Plan
	 Foundational Calculi ?
	 $lambda $-Calculus
	 Concurrency?
	 Functional vs Concurrent
	 Functional vs Concurrent
	 CCS
	 Sequential Process Expressions (I)

	 Sequential Process Expressions (II)

	 Free Names, Inductively
	 Substitution, Inductively
	 Simultaneous Substitution, Inductively
	 Example: 1-Place Binary Buffer
	 Example: 2-Place Binary Buffer
	Labeled Transition Systems
	 LTS - Sequential Expressions
	 Concurrent Process Expressions (I)

	 Concurrent Process Expressions (II)

	 Bound and Free Names
	 $alpha $-Conversion & Substitution
	 Examples
	 LTS --- Concurrent Expressions
	 Buffers, revisited etc

