Concurrency: Theory, Languages and Programming

Functions and Data –

Session 3 – Nov 05, 2003

Martin Odersky

EPFL-LAMP

Part I: Data in Scala

- So far, we have been only dealing with predefined (numeric) datatypes and with functions.
- We now explain how to define new kinds of data.
- □ Example: Scala does not have a type of rational numbers, but it is easy to define one, using a class.

```
class Rational(n: int, d: int) {
  private def gcd(x: int, y: int): int = {
     if (x == 0) y
     else if (x < 0) \gcd(-x, y)
     else if (y < 0) - gcd(x, -y)
     else gcd(y \% x, x);
  private val g = gcd(n, d);
  val numer: int = n/g;
  val denom: int = d/g;
  def + (that: Rational) = new Rational(
     numer * that.denom + that.numer * denom.
     denom * that.denom);
```

Creating and Accessing Objects

 \square Here's a program that prints the sum of all numbers 1/i where i ranges from 1 to 10.

```
var i = 1;
var x = new Rational(0, 1);
while (i \leq 10) {
    x = x + new Rational(1,i);
    i = i + 1;
}
System.out.println(x.numer + "/" + x.denom);
```

 $\ \ \, \Box$ The + operation converts both its operands to strings and returns the concatenation of the result strings. It thus corresponds to + in Java.

Case Classes

□ A case class is defined like a normal class, except that the definition is prefixed with the modifier case.
 □ Example:

 abstract class Expr;
 case class Number(n: int) extends Expr;
 case class Sum(e1: Expr, e2: Expr) extends Expr;
 □ This introduces Number and Sum as case classes which extend class Expr.

The *case* modifier in front of a class definition has the following effects.

Case classes implicitly come with a constructor function, with the same name as the class. In our example, the following functions are implicitly added:

```
def Number(n: int) = new Number(n);
def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2);
```

Hence, one can now construct expression trees more concisely:

```
Sum(Sum(Number(1), Number(2)), Number(3))
```

□ Case classes allow the constructions of *patterns* which refer to the case class constructor.

Pattern Matching

- ☐ Pattern matching is a generalization of C or Java's *switch* statement to class hierarchies.
- □ For instance, here is an implementation of eval using pattern matching.

```
def eval(e: Expr): int = e match {
    case Number(x) \Rightarrow x
    case Sum(I, r) \Rightarrow eval(I) + eval(r)
}
```

- □ In this example, there are two cases.
- Each case associates a pattern with an expression.
- ☐ Patterns are *matched* against the selector values *e*.

- □ For instance, Number(n) matches all values of the form Number(V), for arbitrary values V.
- \Box The *pattern variable n* is bound to the value *V*.
- In general, patterns are built from
 - Case class constructors, e.g. *Number*, *Sum*, whose arguments are again patterns,
 - pattern variables, e.g. n, e1, e2,
 - the "wildcard" pattern _,
 - constants, e.g. 1, true, "abc", MAXINT.

Pattern variables always start with a lower-case letter, so that they can be distinguished from constant identifiers, which start with an upper case letter.

Part II: Program Equivalence

- \square Question: When are two lambda terms M and N equivalent, in the following sense:
- $\hfill \square$ Exchanging M by N in a program does not change the behavior of the program
- \square This notion is called *operational equivalence*, written $M\cong N$.
- □ It is formalized as follows.

$$M \cong N \quad \text{iff} \quad \forall C.C[M] \Downarrow \quad \Leftrightarrow \quad C[N] \Downarrow .$$

- \square Here, $M \Downarrow$ means that evaluation of M terminates.
- \square Formally, $M \Downarrow \text{iff } \exists V.M \twoheadrightarrow V$.

Operational Equivalence and eta-Conversion

- \square β -Reduction also gives rise to another program equivalence, called *convertibility*.
- \square Define: $M =_{\beta} N$ iff $\exists M'.M \rightarrow M' \land N \rightarrow M'$.
- \Box Then $=_{\beta}$ is the smallest congruence that includes reduction \rightarrow .
- \square Also, we have that: $M =_{\beta} N \Rightarrow M \cong N$
- $\hfill \square$ Question: : Name two terms M,N such that $M\cong N$ but not $M=_{\beta}N$?

Part III: Church Encodings

The treatment so far covered <i>pure</i> lambda calculus which consists of just functions and their applications.
Actual programming languages add to this primitive data types and their operations, named value and function definitions, and much more.
We can model these constructs by extending the basic calculus.
But it is also possible to <i>encode</i> these constructs in the basic calculus itself.
These encodings will be presented in the following.
We will assume in general call-by-name evaluation, but will also work out modifications needed for call-by-value.

Encoding of Booleans

- □ An abstract type of booleans is given by the two constants true and false as well as the conditional if.
- Other constructs can be written in terms of these primitives.
 E.g.

```
not x = if(x) false else true

x \mid | y = if(x) true else y

x & y = if(x) y else false
```

□ Idea: The encoding of a boolean value $B \in \{true, false\}$ is the binary function

$$\lambda x. \lambda y.$$
 if (B) x else y

That is:

true
$$\stackrel{\mathrm{def}}{\equiv} \lambda x. \ \lambda y. \ x$$
false $\stackrel{\mathrm{def}}{\equiv} \lambda x. \ \lambda y. \ y$
if $c \ x \ y \stackrel{\mathrm{def}}{\equiv} c \ x \ y$

Example:

if (true)
$$D$$
 else E $\stackrel{\mathrm{def}}{\equiv}$ true D E $\stackrel{\mathrm{def}}{\equiv}$ $(\lambda x . \lambda y. x) D E$ \rightarrow $(\lambda y . D) E$ \rightarrow D

Question: What changes to this encoding are necessary if the evaluation strategy is call-by-value?

Encoding of Lists

The encoding of Booleans can be generalized to arbitrary algebraic data types.

Example: Consider the type of lists (as defined in Haskell):

 $data \ List \ a = Nil \mid Cons \ a \ (List \ a)$

This defines a type of lists with (nullary) constructor *Nil* and (curried binary) constructor *Cons*.

A list xs can be accessed using a case-expression

case xs of Nil $Arrow E_1 \mid Cons x xs \Rightarrow E_2$

Here, the expression of the second branch, E_2 , can refer to the variables x and xs defined in the Cons pattern.

All other functions over lists can be written in terms of the case-expression.

For instance, function *car* which equals *head* except that it avoids errors, can be written as:

$$car xs =$$
 $case xs of$
 $Nil \Rightarrow Nil$
 $Cons y ys \Rightarrow x$

Question: How can lists be encoded? Same principle as before: Equate a list with the case-expression that accesses it.

$$xs \stackrel{\mathrm{def}}{\equiv} \lambda a. \lambda b. case xs of Nil \Rightarrow a \mid Cons x xs \Rightarrow b x xs$$

That is:

Nil
$$\stackrel{\mathrm{def}}{\equiv}$$
 $\lambda a. \lambda b. \ a$
Cons x xs $\stackrel{\mathrm{def}}{\equiv}$ $\lambda a. \lambda b. \ b$ x xs

or, equivalently:

Cons
$$\stackrel{\mathrm{def}}{\equiv} \lambda x. \lambda xs. \lambda a. \lambda b. \ b \ x \ xs$$

The pattern-bound names *x* and *xs* are now passed as parameters to the case branch that accesses them.

Example: : car is coded as follows:

$$\mathit{car} \stackrel{\mathrm{def}}{\equiv} \lambda \mathit{xs.} \ \mathit{xs} \ \mathit{Nil} \ (\lambda \mathit{y.} \lambda \mathit{ys.} \mathit{y})$$

Exercise: Church-encode function is Empty which returns true iff the given list is empty. Languages and Programming – Functions and Data – Session 3 – Nov 05, 2003 – (produced on March 4, 2004) – p.16/26

Encoding of Numbers

The encoding for lists generalizes to arbitrary data types which are defined in terms of a finite number of constructors. For instance, whole numbers don't present any new difficulties. To see this, note that natural numbers can be coded as algebraic data types as follows:

Hence:

Zero
$$\stackrel{\mathrm{def}}{\equiv} \lambda a. \lambda b. a$$

Succ $x \stackrel{\mathrm{def}}{\equiv} \lambda a. \lambda b. b. x$

Note: Church encodings do not reflect types. In fact Zero, Nil, and true are all mapped to the same term!

Encoding of Definitions

A non-recursive value definition val x = D; E can be encoded as:

val
$$x = D$$
; $E \stackrel{\text{def}}{\equiv} (\lambda x.E) D$

Caveat: With a call-by-name strategy, D might be evaluated more than once.

Let's try an analogous principle for function definitions:

$$def f x = D ; E \stackrel{\text{def}}{\equiv} val f = \lambda x.D ; E$$

$$\stackrel{\text{def}}{\equiv} (\lambda f.E) (\lambda x.D)$$

But this fails if *f* is used recursively in *D*! (Why?)

Fixed Points to the Rescue

If we have a recursive definition of

$$val f = E$$

where *E* refers to *f*, we can interpret this as a solution to the equation

$$f = E$$

Another way to characterize solutions to this equation is to say that these solutions are fixed points of the function $\lambda f.E$.

Definition: A *fixed point* of a function f is a value x such that

$$f x = x$$

Proposition: The solutions of f = E are exactly the fixed points of $\lambda f.E$

Proof: *F* is a solution of the equation

$$f = E$$

iff

$$F = [F/f]E$$

iff

$$F = (\lambda f.E) F$$

iff F is a fixed point of $\lambda f.E$.

Fixed Point Operators

Let's assume the existence of a *fixed point operator* Y. For every function f, Yf evaluates to a fixed point of f. That is,

$$Yf = f(Yf)$$

Then we can encode potentially recursive definitions as follows:

$$def f x = D ; E \stackrel{\text{def}}{\equiv} val f = Y (\lambda f. \lambda x. D) ; E$$

$$\stackrel{\text{def}}{\equiv} (\lambda f. E) (Y (\lambda f. \lambda x. D))$$

Remains the question whether Y exists.

Proposition: Let

$$Y \stackrel{\text{def}}{\equiv} \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

Then *Y* is a fixed point operator:

$$Yf = f(Yf)$$

Proof: By repeated β -reduction.

Least Fixed Points

In fact, an equation will in general have several solutions, and a function will in general have several fixed points.

Example: The equation f = f has every λ -term as a solution. Can we characterize the fixed point computed by Y?

Proposition: Among all the fixed points of a function f, Yf will return the one which diverges most often. This is also called the *least fixed point* of the function f.

Exercise: Find the least fixed point of $\lambda f.f$ (which is also the least solution of the equation f = f).

Connection to Domain Theory

The definition of least fixed points is made precise in the field of <i>domain theory</i> .
Domain theory gives $\lambda\text{-terms}$ meaning by mapping them to mathematical functions.
Divergent terms are modeled by a value \perp , which stands fo "undefined".
Domain theory introduces a partial ordering on values which makes \bot smaller than any defined value.
The fixed points computed by Y are the smallest with respect to this ordering.

Summary

- \square We have seen the basic theory of λ -calculus, and how it can express functional programming.
- ☐ Two main variants: Call-by-value and call-by-name.
- □ In each case, evaluation is described by reduction of function applications, using rule β (or β_V).
- \square λ -calculus has two important properties, which make it well suited as a basis of deterministic programming languages:
 - Confluence: Every term can be reduced to at most one value.
 - Standardization: There exists a deterministic reduction strategy which always reduces a term to a value, provided it can be done at all.

Outlook

- λ-calculus is ideally suited as a basis for functional programming.
 But it is less well suited as basis for imperative programming
- But it is less well suited as basis for imperative programming with side effects (essentially, need to introduce and carry along a data structure describing global state).
- □ It is not suitable at all as a basis for reactive systems with concurrent evaluation.
- ☐ Two new issues:
 - Non-determinism: If programs can have several behaviors, confluence no longer holds.
 - Non-termination: Operational equivalence needs to be adapted for programs that do not terminate.