
Concurrency:
Languages, Programming and Theory

– Equivalences forπ-Calculus –

Session 13 – January 28, 2004

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.1/18

Derivation of Transitions (Repetition)

What is Operational Semantics about?

It provides us with a formal (=mechanizable) way to find out
which computations steps (=transitions) are possible for the
current state of a system.

It provides a compiler with a precise specification of what to do!

It provides the basis for the definition of program equivalences
(and congruences!) like bisimularities.

A tool like the ABC should (=must) be able to:
(1) derive transitions according to the operational semantics,
(2) play the bisimulation game based on this information,
(3) allow us to simulate system behaviors using this information.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.2/18

Derivation of Transitions: Example

(νz)
(

(νy)(x〈y〉+z(w))
∣

∣ (x(u).u〈v〉
∣

∣ y〈z〉)
) τ
−−→ . . .

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.3/18

Towards Bisimulation in π-Calculus

� “standard” definition is based on labeled transitions

� PROBLEM: infinite branching
due to infinitely many input transitions
⇒ late input transitions

� PROBLEM: lack of congruence properties!

• when should substitution take place?
• how to keep track of freshness of names?

� PROBLEM: four (!) different (!!) styles of bisimulation
ground — early — late — open
⇒ which bisimulation is the “best”?

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.4/18

Input Transitions

y(~x).P
y~z

−−−→ [~z/~x]P for all ~z ⊆ N

generates infinitely many transitions
for each enabled input prefix.

y(~x).P
y(~x)

−−−−→ P

collapses all of them in one
by not yet instantiating the received variable.
The input is called late (or symbolic).
(The . . . -rule should then take care of substitutions.)

(PRE) µ.P
µ

−−→ P

replaces the former (TAU), (OUT), and (INP).

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.5/18

Other Transitions ?

Now, we have transition labels
µ ::= τ

∣

∣ y(~x)
∣

∣ (ν ~w) y〈~z〉

where ~w ⊆ ~z and y 6∈ ~w. (Note that there are no more labels of
the form y〈~x〉 as we had in Session 6.)

If we change the rule for input transitions,
then what is the precise effect on the other transitions?

Note that the names ~x in an input label y(~x) arose from an input
binding, and that we still need to substitute them . . .

Let us defined the bound names of a label by:

bn(y(~x))
def
= {~x} bn((ν ~w) y〈~z〉)

def
= {~w}

and, of course bn(τ)
def
= ∅.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.6/18

Output Transitions

No input transitions involved.
No change needed, here.

(RES)
P

µ
−−→ P ′

(νc) P
µ

−−→ (νc) P ′
if c 6∈ n(µ)

(OPEN)
P

(ν~b) a〈~z〉
−−−−−−−→ P ′

(νc) P
(νc~b) a〈~z〉

−−−−−−−−→ P ′

if ~z 3 c 6∈ {a,~b}

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.7/18

“Uniform” Transitions

No change required.
Only non-critical access to bound names of transitions . . .

(SUM)
P

µ
−−→ P ′

P + Q
µ

−−→ P ′

(REP)
P | !P

µ
−−→ P ′

!P
µ

−−→ P ′

(ALP)
Q

µ
−−→ Q′

P
µ

−−→ Q′
if P =α Q

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.8/18

Transitions of Parallel Compositions

Some change & care required.
(PAR) must respect the bound input names.

(PAR)
P

µ
−−→ P ′

P |Q
µ

−−→ P ′ |Q
if bn(µ) ∩ fn(Q) = ∅

(CLOSE)
P

a(~x)
−−−−→ P ′ Q

(ν~b) a〈~z〉
−−−−−−−→ Q′

P |Q
τ

−−→ (ν~b) ([~z/~x]P ′ |Q′)
if {~b} ∩ fn(P) = ∅

(CLOSE) must deal with the proper label and perform the
substitution . . . quite at a quite late stage.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.9/18

Simulating Input Transitions (I)

Definition: (“standard”)

. . . whenever P S Q, if P
y(~x)

−−−−→ P ′ then

there is Q′ such that Q
y(~x)

−−−−→ Q′ with P ′ S Q′

Compare the following terms:

x̄ | y ∼ x̄.y + y.x̄

a(x).(x̄ | y) ∼ a(x).(x̄.y + y.x̄)

a(x).(νy) (x̄ | y) ∼ a(x).(νy) (x̄.y + y.x̄)

So, this kind of input simulation does not yield a congruence !
Closure under input prefix means closure under substitutions !

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.10/18

Simulating Input Transitions (II)

. . . whenever P S Q, if P
y(~x)

−−−−→ P ′ then

ground

there is Q′

such that Q
y(~x)

−−−−→ Q′ with P ′ S Q′

early

for all ~z there is Q′

such that Q
y(~x)

−−−−→ Q′ with [~z/~x]P ′ S [~z/~x]Q′

late

there is Q′

such that for all ~z Q
y(~x)

−−−−→ Q′ with [~z/~x]P ′ S [~z/~x]Q′

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.11/18

Simulating Input Transitions

Compare again the following terms:

x̄ | y ∼ x̄.y + y.x̄

a(x).(x̄ | y) ∼ a(x).(x̄.y + y.x̄)

So, neither early nor late input simulation yield congruences !

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.12/18

Open Input Simulation

. . . whenever P S Q,

for all σ , if σP
µ

−−→ P ′ then

there is Q′ such that σQ
µ

−−→ Q′ with P ′ S Q′.

Note:

� Substitution-closure is required before each step.

� Open simulation provides
substitution-closure “by definition”.

However, it is going a bit too far . . .

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.13/18

Example

Compare the following terms:

x̄ | y ∼ x̄.y + y.x̄

a(x).(νy) (x̄ | y) ∼ a(x).(νy) (x̄.y + y.x̄)

(νx) a〈x〉.(x̄ | y) ∼ (νx) a〈x〉.(x̄.y + y.x̄)

What happens after the output transition
(νx) a〈x〉

−−−−−−−→ ?

If we forget that x was freshly generated,
then it might accidentally be confused with y
when open-simulating the next (τ) transition.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.14/18

Simulating Output Transitions

Under open simulation the approach:

. . . whenever P S Q,

if P
(ν ~w) y〈~z〉

−−−−−−−−→ P ′ then

there is Q′ such that Q
(ν ~w) y〈~z〉

−−−−−−−−→ Q′ with P ′ S Q′.

is too naïve !!

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.15/18

Distinction

Definition:
A distinction D is a
finite symmetric ir reflexive relation on names.

A substitution σ respects a distinction D
if (x, y) ∈ D implies σx 6= σy.

A D-congruence is . . . w.r.t. only those contexts
that do not use the names in D as “hole-binding” names.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.16/18

Open Bisimilarity

Definition:
{∼D | D is a distinction} is the largest family of symmetric
relations such that if P ∼D Q and σ respects D, then

� if σP
µ

−−→ P ′ and µ is not a bound output, then

there is Q′ such that σQ
µ

−−→ Q′ with P ′ ∼D Q′.

� if σP
(ν ~w) y〈~z〉

−−−−−−−−→ P ′, then

there is Q′ such that σQ
(ν ~w) y〈~z〉

−−−−−−−−→ Q′ with P ′ ∼D′

Q′

where D′ := σD ∪ ({~w} × fn(σP, σQ))=.

The weak version is defined as usual.
Both the strong and weak bisimilarities are D-congruences.

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.17/18

Relation to the ABC

The bisimulation relation generated by the ABC
are open bisimulations.

Each element of such a relation is a triple,
consisting of two terms and a distinction . . .

Some more interesting examples next week . . .

Concurrency:Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.18/18

	 Derivation of Transitions (Repetition)

	 Derivation of Transitions: Example
	 Towards Bisimulation in $pi $-Calculus
	 Input Transitions
	 Other Transitions ?
	 Output Transitions
	 ``Uniform'' Transitions
	 Transitions of Parallel Compositions
	 Simulating Input Transitions (I)
	 Simulating Input Transitions (II)

	 Simulating Input Transitions
	 Open Input Simulation
	 Example
	 Simulating Output Transitions
	 Distinction
	 Open Bisimilarity
	 Relation to the ABC

