Concurrency: Languages, Programming and Theory – Equivalences for π-Calculus – Session 13 – January 28, 2004

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – Equivalences for π -Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.1/18

Derivation of Transitions (Repetition)

What is Operational Semantics about?

It provides us with a *formal* (=mechanizable) way to find out which *computations steps* (=transitions) are possible for the current state of a system.

It provides a *compiler* with a *precise specification* of what to do!

It provides the basis for the definition of *program equivalences* (and congruences!) like bisimularities.

A tool like the ABC should (=must) be able to:

(1) derive transitions according to the operational semantics,

(2) play the bisimulation game based on this information,

(3) allow us to simulate system behaviors using this information.

Derivation of Transitions: Example

 $(\boldsymbol{\nu} z) \left((\boldsymbol{\nu} y) (\overline{x} \langle y \rangle + z(w)) \mid (x(u) \cdot \overline{u} \langle v \rangle \mid \overline{y} \langle z \rangle) \right) \xrightarrow{\tau} \dots$

Concurrency:Languages, Programming and Theory – Equivalences for π -Calculus – Session 13 – January 28, 2004 – (produced on March 4, 2004, 18:46) – p.3/18

Towards Bisimulation in π **-Calculus**

"standard" definition is based on *labeled transitions*

□ PROBLEM: *infinite branching* due to infinitely many input transitions
 ⇒ *late input transitions*

□ PROBLEM: lack of congruence properties!

- when should substitution take place?
- how to keep track of freshness of names?

□ PROBLEM: four (!) different (!!) styles of bisimulation ground — early — late — open ⇒ which bisimulation is the "best"?

Input Transitions

$$y(\vec{x}).P \xrightarrow{y\vec{z}} [\vec{z}/\vec{x}]P$$
 for all $\vec{z} \subseteq \mathcal{N}$

 $u(\vec{x})$

generates *infinitely many* transitions for each enabled input prefix.

$$y(\vec{x}).P \xrightarrow{s(\mathbf{r})} P$$

collapses all of them in one
by **not yet instantiating** the received variable.
The input is called **late** (or *symbolic*).
(The ... -rule should then take care of substitutions.)

(pre)
$$\mu.P \xrightarrow{\mu} P$$

replaces the former (TAU), (OUT), and (INP).

Other Transitions ?

Now, we have transition labels

 $\mu ::= \tau \mid y(\vec{x}) \mid (\boldsymbol{\nu}\vec{w}) \,\overline{y} \langle \vec{z} \rangle$

where $\vec{w} \subseteq \vec{z}$ and $y \notin \vec{w}$. (Note that there are no more labels of the form $y\langle \vec{x} \rangle$ as we had in Session 6.)

If we change the rule for input transitions, then what is the precise effect on the other transitions?

Note that the names \vec{x} in an input label $y(\vec{x})$ arose from an input binding, and that we still need to substitute them ...

Let us defined the bound names of a label by:

$$\operatorname{bn}(y(\vec{x})) \stackrel{\text{def}}{=} \{\vec{x}\} \qquad \operatorname{bn}((\boldsymbol{\nu}\vec{w})\,\overline{y}\langle\vec{z}\rangle) \stackrel{\text{def}}{=} \{\vec{w}\}$$

and, of course $\operatorname{bn}(\tau) \stackrel{\text{def}}{=} \emptyset$.

Output Transitions

No input transitions involved. No change needed, here.

$$(\mathsf{RES}) \frac{P \xrightarrow{\mu} P'}{(\boldsymbol{\nu}c) P \xrightarrow{\mu} (\boldsymbol{\nu}c) P'} \text{ if } c \notin \mathbf{n}(\mu)$$

$$(\mathsf{OPEN}) \frac{P \xrightarrow{(\boldsymbol{\nu}\vec{b}) \overline{a}\langle \vec{z} \rangle} P'}{(\boldsymbol{\nu}c) P \xrightarrow{(\boldsymbol{\nu}\vec{c}\vec{b}) \overline{a}\langle \vec{z} \rangle} P'} \text{ if } \vec{z} \ni c \notin \{a, \vec{b}\}$$

"Uniform" Transitions

No change required.

Only non-critical access to bound names of transitions ...

(SUM)
$$\frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'}$$
(REP)
$$\frac{P \mid ! P \xrightarrow{\mu} P'}{! P \xrightarrow{\mu} P'}$$

(ALP)
$$\frac{Q \xrightarrow{\mu} Q'}{P \xrightarrow{\mu} Q'}$$
 if $P =_{\alpha} Q$

Transitions of Parallel Compositions

Some change & care required. (PAR) must respect the bound input names.

$$(\text{PAR}) \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q} \text{ if } \operatorname{bn}(\mu) \cap \operatorname{fn}(Q) = \emptyset$$

$$(\text{CLOSE}) \frac{P \xrightarrow{a(\vec{x})} P' \quad Q}{P \mid Q \xrightarrow{\tau} (\boldsymbol{\nu} \vec{b}) ([\vec{z}/\vec{x}] P' \mid Q')} \text{ if } \{\vec{b}\} \cap \operatorname{fn}(P) = \emptyset$$

(CLOSE) must deal with the proper label and perform the substitution ... quite at a quite late stage.

Simulating Input Transitions (I)

Definition: ("standard")

... whenever $P \ S \ Q$, if $P \xrightarrow{y(\vec{x})} P'$ then there is Q' such that $Q \xrightarrow{y(\vec{x})} Q'$ with $P' \ S \ Q'$

Compare the following terms:

$$\bar{x} \mid y \qquad \sim \qquad \bar{x}.y + y.\bar{x}$$

$$a(x).(\bar{x} \mid y) \qquad \sim \qquad a(x).(\bar{x}.y + y.\bar{x})$$

$$a(x).(\boldsymbol{\nu}y)(\bar{x} \mid y) \qquad \sim \qquad a(x).(\boldsymbol{\nu}y)(\bar{x}.y + y.\bar{x})$$

So, this kind of input simulation does not yield a congruence ! *Closure under input prefix* means *closure under substitutions* !

Simulating Input Transitions (II)

... whenever
$$P \mathcal{S} Q$$
, if $P \xrightarrow{y(\vec{x})} P'$ then

ground

there is
$$Q'$$

such that $Q \xrightarrow{y(\vec{x})} Q'$ with $P' S Q'$

early

for all
$$\vec{z}$$
 there is Q'

such that
$$Q \xrightarrow{y(\vec{x})} Q'$$
 with $[\vec{z}/_{\vec{x}}]P' \mathcal{S} [\vec{z}/_{\vec{x}}]Q'$

late

there is Q'such that for all $\vec{z} Q \xrightarrow{y(\vec{x})} Q'$ with $[\vec{z}/\vec{x}]P' \mathcal{S}[\vec{z}/\vec{x}]Q'$

Simulating Input Transitions

Compare again the following terms:

$$\bar{x} \mid y \quad \sim \quad \bar{x}.y + y.\bar{x}$$
$$a(x).(\bar{x} \mid y) \quad \sim \quad a(x).(\bar{x}.y + y.\bar{x})$$

So, neither early nor late input simulation yield congruences !

Open Input Simulation

... whenever
$$P \ S \ Q$$
,
[for all σ], if $\sigma P \xrightarrow{\mu} P'$ then
there is Q' such that $\sigma Q \xrightarrow{\mu} Q'$ with $P' \ S \ Q'$.

Note:

- □ Substitution-closure is required *before* each step.
- Open simulation provides substitution-closure "by definition".

However, it is going a bit too far ...

Example

Compare the following terms:

$$\bar{x} \mid y \qquad \sim \qquad \bar{x}.y + y.\bar{x}$$
$$a(x).(\boldsymbol{\nu}y)(\bar{x} \mid y) \sim \qquad a(x).(\boldsymbol{\nu}y)(\bar{x}.y + y.\bar{x})$$
$$(\boldsymbol{\nu}x) \,\overline{a} \langle x \rangle.(\bar{x} \mid y) \sim \qquad (\boldsymbol{\nu}x) \,\overline{a} \langle x \rangle.(\bar{x}.y + y.\bar{x})$$

What happens after the output transition $\xrightarrow{(\nu x) \overline{a} \langle x \rangle}$?

If we forget that x was freshly generated, then it might accidentally be confused with ywhen open-simulating the next (τ) transition.

Simulating Output Transitions

Under open simulation the approach:

... whenever
$$P \ S \ Q$$
,
if $P \xrightarrow{(\nu \vec{w}) \overline{y} \langle \vec{z} \rangle} P'$ then
there is Q' such that $Q \xrightarrow{(\nu \vec{w}) \overline{y} \langle \vec{z} \rangle} Q'$ with $P' \ S \ Q'$.

is too naïve !!

Distinction

Definition:

A *distinction D* is a finite symmetric *ir* reflexive relation on names.

A substitution σ *respects* a distinction D if $(x, y) \in D$ implies $\sigma x \neq \sigma y$.

A *D-congruence* is ... w.r.t. only those contexts that do not use the names in *D* as "hole-binding" names.

Open Bisimilarity

Definition:

 $\{\sim^D \mid D \text{ is a distinction}\}\$ is the largest family of symmetric relations such that if $P \sim^D Q$ and σ respects D, then

 $\Box \text{ if } \sigma P \xrightarrow{\mu} P' \text{ and } \mu \text{ is not a bound output, then}$ there is Q' such that $\sigma Q \xrightarrow{\mu} Q'$ with $P' \sim^D Q'$.

$$\Box \text{ if } \sigma P \xrightarrow{(\boldsymbol{\nu} \vec{w}) \, \overline{y} \langle \vec{z} \rangle} P', \text{ then}$$

there is Q' such that $\sigma Q \xrightarrow{(\boldsymbol{\nu} \vec{w}) \, \overline{y} \langle \vec{z} \rangle} Q'$ with $P' \sim^{D'} Q'$
where $D' := \sigma D \cup (\{\vec{w}\} \times \operatorname{fn}(\sigma P, \sigma Q))^{=}.$

The weak version is defined as usual. Both the strong and weak bisimilarities are *D*-congruences.

Relation to the ABC

The bisimulation relation generated by the ABC are open bisimulations.

Each element of such a relation is a triple, consisting of two terms and a *distinction*

Some more interesting examples next week ...