Concurrency: Languages, Programming and Theory

 - Proofs in CCS -
Session 12 - January 21, 2004

Uwe Nestmann

EPFL-LAMP

The Scheduler Problem

\square informal specification
\square specification as sequential process expression
\square implementation as concurrent process expression
\square comparison between specification and implementaton

- proofs using ABC
- proofs "by hand" (very close to [§7.3])

Scheduler, Informally [Mi199, § 3.6]

\square a set of n processes $P_{i}, 0 \leq i \leq n-1$ is to be scheduled
$\square P_{i}$ starts by sync'ing on a_{i} with the scheduler
$\square P_{i}$ completes by sync'ing on b_{i} with the scheduler
\square (1) each P_{i} must not run two tasks at a time
\square (2) tasks of different P_{i} may run at the same time
$\square a_{i}$ are required to occur cyclically (initially, 0 starts)
\square for each i, a_{i} and b_{i} must occur cyclically
\square (3) maximal "progress":
the scheduling must permit any of the "buttons" to be pressed at any time provided (1) and (2) are not violated.

Formal Specification [Mil99, § 3.6]

$i \in\{0 \ldots, n-1\} \quad X \subseteq\{0 \ldots, n-1\}$
$\mathrm{S}_{i, X}(\vec{a}, \vec{b}) \stackrel{\text { def }}{=}$ scheduler, where i is next and every $j \in X$ is running
(* we omit the parameters in the following *)
$\mathbf{S}_{i, X} \stackrel{\text { def }}{=} \begin{cases}\sum_{j \in X} b_{j} \cdot \mathbf{S}_{i, X-j} & (i \in X) \\ \sum_{j \in X} b_{j} \cdot \mathrm{~S}_{i, X-j}+a_{i} \cdot \mathbf{S}_{(i+1) \bmod n, X \cup i} & (i \notin X)\end{cases}$
Scheduler $_{n} \stackrel{\text { def }}{=} \mathrm{S}_{0, \emptyset}$
\square draw the transition graph for $n=2$
\square show that the scheduler is never deadlocked
\square what is the difference when dropping the case for $i \in X$?

Formal "Implementation" [§ 7.3]

$$
\begin{aligned}
& A(a, b, c, d) \stackrel{\text { def }}{=} \\
&= a . c . b . \bar{d} . A \\
& \hline A(a, b, c, d) \stackrel{\text { def }}{=} \\
& a . C\langle a, b, c, d\rangle \\
& C(a, b, c, d) \stackrel{\text { def }}{=} c . B\langle a, b, c, d\rangle \\
& B(a, b, c, d) \stackrel{\text { def }}{=} \\
& D . D\langle a, b, c, d\rangle \\
& D(a, b, c, d) \stackrel{\text { def }}{=} \\
& d
\end{aligned} \cdot A\langle a, b, c, d\rangle .
$$

Formal "Implementation" (II) [§ 7.3]

$$
\begin{array}{rc}
A(a, b, c, d) & \stackrel{\text { def }}{=} a \cdot c \cdot(b \cdot \bar{d} \cdot A+\bar{d} \cdot b \cdot A) \\
\hline A(a, b, c, d) & \stackrel{\text { def }}{=} a \cdot C\langle a, b, c, d\rangle \\
C(a, b, c, d) & \stackrel{\text { def }}{=} c \cdot E\langle a, b, c, d\rangle \\
E(a, b, c, d) & \stackrel{\text { def }}{=} b \cdot D\langle a, b, c, d\rangle+\bar{d} \cdot B\langle a, b, c, d\rangle \\
B(a, b, c, d) & \stackrel{\text { def }}{=} b \cdot A\langle a, b, c, d\rangle \\
D(a, b, c, d) & \stackrel{\text { def }}{=} \bar{d} \cdot A\langle a, b, c, d\rangle \\
\hline A_{i} & \stackrel{\text { def }}{=} A\left\langle a, b, c_{i}, c_{i-1}\right\rangle \\
\ldots & \\
S_{n} & \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(A_{1}\left|D_{2}\right| \cdots \mid D_{n}\right) \\
& \\
\text { Scheduler }_{n} \stackrel{?}{\approx} S_{n}
\end{array}
$$

Proofs Using ABC

\square model the specification for $n=2$
\square model the wrong (!) implementation for $n=2$
\square run the ABC
\square analyze the transitions systems (using step)
\square understand the problem w.r.t. the formal \& informal specification
\square model now the correct implementation for $n=2$
\square run the ABC
\square understand the bisimulation relation that ABC has generated
\square if time left, try out for $n=3 \ldots$

Proofs "by Hand" (I)

means: "guessing" a bisimulation relation!

\square draw the transition graph of S for $n=2$
\square generalize for greater $n \ldots$
\square Observe: every reachable state is of the form

$$
(\boldsymbol{\nu} \vec{c})\left(Q_{1}\left|Q_{2}\right| \cdots \mid Q_{n}\right)
$$

where Q is one of A, B, C, D, E.
\square Observe that in any state reachable from S_{n} only one of the Q is one of A, B, C, while all other Q are either of D, E.
\square analyze the "meaning" of the those states

Proofs "by Hand" (II)

analyze the "meaning" of the following states for $n=4$

$$
\begin{aligned}
& (\boldsymbol{\nu} \vec{c})\left(D_{1}\left|E_{2}\right| A_{3} \mid E_{n}\right) \\
& (\boldsymbol{\nu} \vec{c})\left(E_{1}\left|D_{2}\right| C_{3} \mid E_{n}\right)
\end{aligned}
$$

Proofs "by Hand" (III)

Let $\{i\}, Y, Z$ be any partition of $\{0 \ldots, n-1\}$.

$$
\begin{aligned}
& A_{i, Y, Z} \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(A_{i}\left|\prod_{j \in Y} D_{j}\right| \prod_{k \in Z} E_{k}\right) \\
& B_{i, Y, Z} \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(B_{i}\left|\prod_{j \in Y} D_{j}\right| \prod_{k \in Z} E_{k}\right) \\
& C_{i, Y, Z} \stackrel{\text { def }}{=}(\boldsymbol{\nu} \vec{c})\left(C_{i}\left|\prod_{j \in Y} D_{j}\right| \prod_{k \in Z} E_{k}\right)
\end{aligned}
$$

Note that $S_{n}=A_{0,\{1 \ldots, n-1\}, \emptyset}$.

Proofs "by Hand" (IV)

Using the Expansion Law, we show that:

$$
\begin{aligned}
A_{i, Y, Z} & \sim a_{i} \cdot C_{i, Y, Z}+\sum_{k \in Z} b_{k} \cdot A_{i, Y \oplus k, Z \ominus k} \\
B_{i, Y, Z} & \sim b_{i} \cdot A_{i, Y, Z}+\sum_{k \in Z} b_{k} \cdot A_{i, Y \oplus k, Z \ominus k} \\
C_{i, Y, Z} & \sim \sum_{k \in Z} b_{k} \cdot A_{i, Y \oplus k, Z \ominus k}+ \\
& + \begin{cases}\tau \cdot A_{i+1, Y \ominus(i+1), Z \oplus i} & \text { if } i+1 \in X \\
\tau \cdot B_{i+1, Y, Z \ominus(i+1) \oplus i} & \text { if } i+1 \in Y\end{cases}
\end{aligned}
$$

Proofs "by Hand" (V)

Let \mathcal{R} be the relation containing the following pairs:

$$
\begin{array}{ll}
A_{i, Y, Z}, & \mathrm{~s}_{i, Z} \\
B_{i, Y, Z}, & \mathrm{~s}_{i, Z \oplus i} \\
C_{i, Y, Z}, & \mathrm{~s}_{i+1, Z \oplus i}
\end{array}
$$

$\square \mathcal{R}$ is a weak bisimulation (up to \sim).
$\square \mathcal{R}$ contains the pair (S_{n}, Scheduler $_{n}$).
\square Q.E.D.

