
Concurrency:
Languages, Programming and Theory

– Proofs in CCS –

Session 12 – January 21, 2004

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – Proofs in CCS – Session 12 – January 21, 2004 – (produced on March 4, 2004, 18:46) – p.1/12



The Scheduler Problem

� informal specification

� specification as sequential process expression

� implementation as concurrent process expression

� comparison between specification and implementaton

• proofs using ABC
• proofs “by hand” (very close to [§ 7.3])
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Scheduler, Informally [Mil99, § 3.6]

� a set of n processes Pi, 0 ≤ i ≤ n−1 is to be scheduled

� Pi starts by sync’ing on ai with the scheduler

� Pi completes by sync’ing on bi with the scheduler

� (1) each Pi must not run two tasks at a time

� (2) tasks of different Pi may run at the same time

� ai are required to occur cyclically (initially, 0 starts)

� for each i, ai and bi must occur cyclically

� (3) maximal “progress”:
the scheduling must permit
any of the “buttons” to be pressed
at any time provided (1) and (2) are not violated.
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Formal Specification [Mil99, § 3.6]

i ∈ {0 . . . , n−1} X ⊆ {0 . . . , n−1}

Si,X(~a,~b )
def
= scheduler, where i is next and every j ∈ X is running

(* we omit the parameters in the following *)

Si,X
def
=

{

∑

j∈X bj .Si,X−j (i ∈ X)
∑

j∈X bj .Si,X−j + ai.S(i+1)mod n,X∪i (i 6∈ X)

Schedulern
def
= S0,∅

� draw the transition graph for n = 2

� show that the scheduler is never deadlocked

� what is the difference when dropping the case for i ∈ X?
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Formal “Implementation” [§ 7.3]

A( a, b, c, d )
def
= a.c.b.d.A

A( a, b, c, d )
def
= a.C〈 a, b, c, d 〉

C( a, b, c, d )
def
= c.B〈 a, b, c, d 〉

B( a, b, c, d )
def
= b.D〈 a, b, c, d 〉

D( a, b, c, d )
def
= d.A〈 a, b, c, d 〉

~a := a1 . . . , an, ~b := b1 . . . , bn ~c := c1 . . . , cn

Ai(~a,~b,~c )
def
= A〈 ai, bi, ci, ci	n1 〉

Bi(~a,~b,~c )
def
= B〈 ai, bi, ci, ci	n1 〉

Ci(~a,~b,~c )
def
= C〈 ai, bi, ci, ci	n1 〉

Di(~a,~b,~c )
def
= D〈 ai, bi, ci, ci	n1 〉

S(~a,~b )
def
= (ν~c)

(

A1〈~a,~b,~c 〉|D2〈~a,~b,~c 〉| · · · |Dn〈~a,~b,~c 〉
)
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Formal “Implementation” (II) [§ 7.3]

A( a, b, c, d )
def
= a.c.(b.d.A + d.b.A)

A( a, b, c, d )
def
= a.C〈 a, b, c, d 〉

C( a, b, c, d )
def
= c.E〈 a, b, c, d 〉

E( a, b, c, d )
def
= b.D〈 a, b, c, d 〉 + d.B〈 a, b, c, d 〉

B( a, b, c, d )
def
= b.A〈 a, b, c, d 〉

D( a, b, c, d )
def
= d.A〈 a, b, c, d 〉

Ai
def
= A〈 a, b, ci, ci−1 〉

. . .

Sn
def
= (ν~c)

(

A1|D2| · · · |Dn

)

Schedulern
?
≈ Sn
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Proofs Using ABC

� model the specification for n = 2

� model the wrong (!) implementation for n = 2

� run the ABC

� analyze the transitions systems (using step)

� understand the problem
w.r.t. the formal & informal specification

� model now the correct implementation for n = 2

� run the ABC

� understand the bisimulation relation that ABC has
generated

� if time left, try out for n = 3 . . .
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Proofs “by Hand” (I)

means: “guessing” a bisimulation relation !

� draw the transition graph of S for n = 2

� generalize for greater n . . .

� Observe: every reachable state is of the form

(ν~c)
(

Q1|Q2| · · · |Qn

)

where Q is one of A,B,C,D,E.

� Observe that in any state reachable from Sn

only one of the Q is one of A,B,C,
while all other Q are either of D,E.

� analyze the “meaning” of the those states
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Proofs “by Hand” (II)

analyze the “meaning” of the following states for n = 4

(ν~c)
(

D1|E2|A3|En

)

(ν~c)
(

E1|D2|C3|En

)
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Proofs “by Hand” (III)

Let {i}, Y, Z be any partition of {0 . . . , n−1}.

Ai,Y,Z
def
= (ν~c)

(

Ai |
∏

j∈Y Dj |
∏

k∈Z Ek

)

Bi,Y,Z
def
= (ν~c)

(

Bi |
∏

j∈Y Dj |
∏

k∈Z Ek

)

Ci,Y,Z
def
= (ν~c)

(

Ci |
∏

j∈Y Dj |
∏

k∈Z Ek

)

Note that Sn = A0,{1...,n−1},∅.
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Proofs “by Hand” (IV)

Using the Expansion Law, we show that:

Ai,Y,Z ∼ ai.Ci,Y,Z +
∑

k∈Z

bk.Ai,Y ⊕k,Z	k

Bi,Y,Z ∼ bi.Ai,Y,Z +
∑

k∈Z

bk.Ai,Y ⊕k,Z	k

Ci,Y,Z ∼
∑

k∈Z

bk.Ai,Y ⊕k,Z	k +

+

{

τ.Ai+1,Y 	(i+1),Z⊕i if i+1 ∈ X

τ.Bi+1,Y,Z	(i+1)⊕i if i+1 ∈ Y
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Proofs “by Hand” (V)

Let R be the relation containing the following pairs:

Ai,Y,Z , Si,Z

Bi,Y,Z , Si,Z⊕i

Ci,Y,Z , Si+1,Z⊕i

� R is a weak bisimulation (up to ∼).

� R contains the pair (Sn, Schedulern).

� Q.E.D.
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