
Concurrency:
Languages, Programming and Theory

– Equivalences for CCS –

Session 11 – January 14, 2004

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.1/20

Bisimulation on CCS

� check out Session 4, again

� add 1+1 . . .

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.2/20

“Algebraic” Properties (I)

� β.P + β.P + M ∼ β.P + M

� (νa) a.P ∼ 0

� (νa) a.P ∼ 0

� (νc) (a.c.P | b.c.Q) ∼ (νc) (a.c.Q | b.c.P)

� . . .

� Why algebraic ?

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.3/20

“Algebraic” Properties (II)

� a | b ∼ a.b + b.a

� For all P ∈ P, P ∼
∑

{ β.Q | P
β

−−→ Q }.

� For all n ≥ 0 and P1, . . . , Pn ∈ P:

P1| · · · |Pn ∼

∑

{ β.(P1| · · · |P
′

i | · · · |Pn)

| 1≤i≤n, Pi

β
−−→ P ′

i }

+
∑

{ τ .(P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn)

| 1≤i<j≤n, Pi

λ
−−→ P ′

i , Pj

λ
−−→ P ′

j }

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.4/20

“Algebraic” Properties (III)

For all n ≥ 0, P1, . . . , Pn ∈ P, and ~a:

(ν~a) (P1| · · · |Pn) ∼

∑

{ β.(ν~a) (P1| · · · |P
′

i | · · · |Pn)

| 1≤i≤n, Pi

β
−−→ P ′

i , and β, β 6∈ ~a }

+
∑

{ τ .(ν~a) (P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn)

| 1≤i<j≤n, Pi

λ
−−→ P ′

i , Pj

λ
−−→ P ′

j }

Expansion Law ! (also called: Interleaving)
Compare to the notions of standard forms in Milner’s book:
every process term can be transformed into a form
that matches the left-hand side of the above equation.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.5/20

Process Contexts

Definition: A process context C[·] is (precisely) defined by the
following syntax:

C[·] ::= [·]
∣

∣ α.C[·] + M
∣

∣ M + α.C[·]
∣

∣ (νa) C[·]
∣

∣ C[·]|P
∣

∣ P |C[·]

The elementary contexts are
α.[·] + M , M + α.[·], (νa) [·], [·]|P , P |[·].

C[Q] denotes the result of
filling the hole [·] of C[·] with process Q.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.6/20

Process congruence

Definition: (Process congruence)
Let ∼= be an equivalence relation over P.

Then ∼= is said to be a process congruence, if
for all contexts C[·],
P ∼= Q implies C[P] ∼= C[Q].

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.7/20

Process congruence (II)

Proposition:
An arbitrary equivalence relation ∼= is a process congruence
if, and only if, it is preserved by all elementary contexts;
i.e., if P ∼= Q, then

α.P + M ∼= α.Q + M

M + α.P ∼= M + α.Q

P |R ∼= Q|R

R|P ∼= R|Q

(νa) P ∼= (νa) Q .

Note:
For proving that an equivalence relation is a congruence,
the elementary contexts suffice.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.8/20

Congruence Properties

Proposition:
Bisimilarity is a process congruence, i.e., . . .

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.9/20

Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single
distinguished internal action symbol, say: τ , as is the case for
our language of concurrent process expressions. Then:
“Different internal behavior” should “not count” !

Definition: (observations / weak actions)

1. =⇒
def
=

τ
−−→ ∗

2. λ
==⇒

def
= =⇒

λ
−−→ =⇒

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.10/20

Weak Simulation

Definition:
S is a weak simulation iff , whenever P S Q,

� if P
τ

−−→ P ′ then there is Q′ ∈ P
such that Q =⇒ Q′ and P ′ S Q′.

� if P
λ

−−→ P ′ then there is Q′ ∈ P

such that Q
λ

==⇒ Q′ and P ′ S Q′.

q weakly simulates p,
if there is a weak simulation S such that p S q.

Example:
Prove that Q = τ.a.τ.b.Q weakly simulates P = a.b.P .
Prove that P = a.b.P weakly simulates Q = τ.a.τ.b.Q.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.11/20

Weak Bisimulation

Definition: (* straightforward / should be no surprise *)
A binary relation B is a weak bisimulation
if both B and its converse B−1 are weak simulations.

P and Q are weakly bisimilar , weakly equivalent , or
observation equivalent , written P ≈ Q,
if there exists a weak bisimulation B with P B Q.

Alternatively:

≈
def
=

⋃

{ B | B is weak bisimulation }

Proposition:

1. ≈ is itself a weak bisimulation.

2. ≈ is an equivalence relation.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.12/20

Strong vs Weak

1. every strong simulation is also a weak one

2. P ∼ Q implies P ≈ Q

Examples ?

Proof ?

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.13/20

Example

A
def
= a.A′ (= a.b.A)

A′ def
= b.A

B
def
= b.B′ (= b.c.B)

B′ def
= c.B

E
def
= a.E′

E′ def
= a.E′′ + c.E

E′′ def
= c.E′

Prove that (νb)(A|B) ≈ E.

(νb)(A′|B)

τ

��

(νb)(A|B)

a
88qqqqqqqqq

(νb)(A′|B′)

c
ffNNNNNNNNN

(νb)(A|B′)

c
ffMMMMMMMMM

a
88ppppppppp

E
a //

E′

c
oo

a
// E′′

coo

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.14/20

Some Inequivalences

P

a

����
��
�� b

��2
22

22
2

0 0

Q

a

��

 τ

��1
11

11
1

0 •

b
��
0

R
τ

����
��
�� τ

��3
33

33
3

•

a
��

•

b
��

0 0

P = a + b Q = a + τ.b R = τ.a + τ.b

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.15/20

Some Equivalences

•

τ
��
�
�
�

•

a
��
0

•
a

��

τ

��1
11

11
1

0 •

a
��
0

•
a

���
�

�
a

��2
22

22
2

•

c
��
�
�
� •

b
��

 τ

��1
11

11
1

0 0 •

c
��
0

τ.a ≈ a a + τ.a ≈ τ.a a.c + a.(b + τ.c)

≈ a.(b + τ.c)

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.16/20

Some Equations

Theorem:
Let P be any process.
Let N,M any summations. Then:

1. P ≈ τ.P

2. M + N + τ.N ≈ M + τ.N

3. M + α.P + α(τ.P + N) ≈ M + α(τ.P + N)

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.17/20

Congruence Properties

Proposition:
Weak bisimilarity is a process congruence, i.e., . . .

Example:

� Observe b ≈ τ.b !

� Let C[·] = a + [·].

Compare C[b] = a + b
?
≈ a + τ.b = C[τ.b] !

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.18/20

Two-Place Buffers

Buff
(1)
s (~a) : 1-place buffer containing s, where ~a = {in, out}

Buff
(1)
ε (~a)

def
= in(x).Buff

(1)
x 〈~a 〉

Buff
(1)
v (~a)

def
= out〈v〉.Buff

(1)
ε 〈~a 〉

Buff
(2)
s (~a) : 2-place buffer containing s — SPECIFICATION

Buff
(2)
ε (~a)

def
= in(x).Buff

(2)
x 〈~a 〉

Buff
(2)
v (~a)

def
= out〈v〉.Buff

(2)
ε 〈~a 〉 + in(w).Buff

(2)
wv〈~a 〉

Buff
(2)
wv(~a)

def
= out〈w〉.Buff

(2)
v 〈~a 〉

Bluff
(2)
s (~a) : 2-place buffer containing s — IMPLEMENTATION

Bluff
(2)
ε (~a)

def
= (νx)

(

Buff(1)〈 in, x 〉|Buff(1)〈 x, out 〉
)

� prove that Buff
(2)
ε 〈~a 〉 ≈ Bluff

(2)
ε 〈~a 〉

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.19/20

Unique Solution of Equations

Theorem:
Let ~X = X1, X2, . . . be a (possibly infinite) sequence of process
variables. In the equations

X1 ≈ α11.Xk(11) + · · · + α1n1
.Xk(1n1)

X2 ≈ α21.Xk(11) + · · · + α2n1
.Xk(2n1)

· · · ≈ · · ·

assume that αij 6= τ . Then, up to ≈, there is a unique sequence
P1, P2, . . . of processes which satisfies the equations.

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.20/20

	 Bisimulation on CCS
	 ``Algebraic'' Properties (I)
	 ``Algebraic'' Properties (II)
	 ``Algebraic'' Properties (III)
	 Process Contexts
	 Process congruence
	 Process congruence (II)
	 Congruence Properties
	 Towards Observation Equivalence
	 Weak Simulation
	 Weak Bisimulation
	 Strong vs Weak
	 Example
	 Some Inequivalences
	 Some Equivalences
	 Some Equations
	 Congruence Properties
	 Two-Place Buffers
	 Unique Solution of Equations

