Concurrency: Languages, Programming and Theory - Equivalences for CCS -
 Session 11 - January 14, 2004

Uwe Nestmann

EPFL-LAMP

Bisimulation on CCS

\square check out Session 4, again
\square add 1+1...

"Algebraic" Properties (I)

$\square \beta \cdot P+\beta \cdot P+M \sim \beta \cdot P+M$
$\square(\boldsymbol{\nu} a) a . P \sim \mathbf{0}$
$\square(\boldsymbol{\nu} a) \bar{a} . P \sim \mathbf{0}$
$\square(\boldsymbol{\nu} c)($ a.c. $P \mid$ b. $\bar{c} . Q) \sim(\boldsymbol{\nu} c)($ a.c. $Q \mid$ b. $\bar{c} . P)$
$\square \ldots$
\square Why algebraic ?

"Algebraic" Properties (II)

$\square a \mid b \sim a . b+b . a$
\square For all $P \in \mathcal{P}, P \sim \sum\{\beta . Q \mid P \xrightarrow{\beta} Q\}$.
\square For all $n \geq 0$ and $P_{1}, \ldots, P_{n} \in \mathcal{P}$:

$$
P_{1}|\cdots| P_{n} \sim\left\{\begin{array}{c}
\sum\left\{\beta \cdot\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{n}\right)\right. \\
\left.\mid 1 \leq i \leq n, P_{i} \xrightarrow{\beta} P_{i}^{\prime}\right\} \\
\sum\left\{\tau \cdot\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{j}^{\prime}|\cdots| P_{n}\right)\right. \\
\left.\mid 1 \leq i<j \leq n, P_{i} \xrightarrow{\lambda} P_{i}^{\prime}, P_{j} \xrightarrow{\bar{\lambda}} P_{j}^{\prime}\right\}
\end{array}\right.
$$

"Algebraic" Properties (III)

For all $n \geq 0, P_{1}, \ldots, P_{n} \in \mathcal{P}$, and \vec{a} :

$$
(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{n}\right) \sim\left\{\begin{array}{r}
\sum\left\{\begin{array}{l}
\sum \cdot(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{n}\right) \\
\left.\mid 1 \leq i \leq n, P_{i} \xrightarrow{\beta} P_{i}^{\prime}, \text { and } \beta, \bar{\beta} \notin \vec{a}\right\}
\end{array}\right. \\
+\begin{array}{r}
\\
\sum\left\{\tau \cdot(\boldsymbol{\nu} \vec{a})\left(P_{1}|\cdots| P_{i}^{\prime}|\cdots| P_{j}^{\prime}|\cdots| P_{n}\right)\right. \\
\left.\mid 1 \leq i<j \leq n, P_{i} \xrightarrow{\lambda} P_{i}^{\prime}, P_{j} \xrightarrow{\bar{\lambda}} P_{j}^{\prime}\right\}
\end{array}
\end{array}\right.
$$

Expansion Law! (also called: Interleaving)
Compare to the notions of standard forms in Milner's book: every process term can be transformed into a form that matches the left-hand side of the above equation.

Process Contexts

Definition:A process context $C[\cdot]$ is (precisely) defined by the following syntax:

$$
\begin{aligned}
& C[\cdot] \quad:=\quad[\cdot] \quad \alpha \cdot C[\cdot]+M \quad \mid \quad M+\alpha . C[\cdot] \\
& \text { | } \quad(\boldsymbol{\nu} a) C[\cdot] \quad|\quad C[\cdot]| P \quad|\quad P| C[\cdot]
\end{aligned}
$$

The elementary contexts are
$\alpha .[\cdot]+M$,
$M+\alpha .[\cdot]$,
($\boldsymbol{\nu} a)$ [$\cdot]$,
$[\cdot] \mid P$,
$P \mid[\cdot]$.
$C[Q]$ denotes the result of filling the hole $[\cdot]$ of $C[\cdot]$ with process Q.

Process congruence

Definition:(Process congruence)
Let \cong be an equivalence relation over \mathcal{P}.
Then \cong is said to be a process congruence, if for all contexts $C[\cdot]$,
$P \cong Q$ implies $C[P] \cong C[Q]$.

Process congruence (II)

Proposition:

An arbitrary equivalence relation \cong is a process congruence if, and only if, it is preserved by all elementary contexts; i.e., if $P \cong Q$, then

$$
\begin{array}{rlrl}
\alpha \cdot P+M \cong \alpha \cdot Q+M & P|R \cong Q| R \\
M+\alpha \cdot P \cong & M+\alpha \cdot Q & R|P \cong R| Q \\
& (\boldsymbol{\nu} a) P \cong(\boldsymbol{\nu} a) Q . &
\end{array}
$$

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Congruence Properties

Proposition:

Bisimilarity is a process congruence, i.e., ...

Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single distinguished internal action symbol, say: τ, as is the case for our language of concurrent process expressions. Then:
"Different internal behavior" should "not count" !
Definition:(observations / weak actions)

1. $\Rightarrow \stackrel{\text { def }}{=} \xrightarrow{\tau}$ *
2. $\stackrel{\lambda}{\Rightarrow} \stackrel{\text { def }}{=} \Rightarrow \xrightarrow{\lambda} \Rightarrow$

Weak Simulation

Definition:

\mathcal{S} is a weak simulation iff, whenever $P \mathcal{S} Q$,
\square if $P \xrightarrow{\tau} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \Rightarrow Q^{\prime}$ and $P^{\prime} \mathcal{S} Q^{\prime}$.
\square if $P \xrightarrow{\lambda} P^{\prime}$ then there is $Q^{\prime} \in \mathcal{P}$ such that $Q \stackrel{\lambda}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \mathcal{S} Q^{\prime}$.
q weakly simulates p,
if there is a weak simulation \mathcal{S} such that $p \mathcal{S} q$.

Example:

Prove that $Q=\tau . a . \tau . b . Q$ weakly simulates $P=a . b . P$.
Prove that $P=a . b . P$ weakly simulates $Q=\tau . a . \tau . b . Q$.

Weak Bisimulation

Definition:(* straightforward / should be no surprise *) A binary relation \mathcal{B} is a weak bisimulation if both \mathcal{B} and its converse \mathcal{B}^{-1} are weak simulations.
P and Q are weakly bisimilar, weakly equivalent, or observation equivalent, written $P \approx Q$, if there exists a weak bisimulation \mathcal{B} with $P \mathcal{B} Q$.
Alternatively:

$$
\approx \stackrel{\text { def }}{=} \cup\{\mathcal{B} \mid \mathcal{B} \text { is weak bisimulation }\}
$$

Proposition:

1. \approx is itself a weak bisimulation.
2. \approx is an equivalence relation.

Strong vs Weak

1. every strong simulation is also a weak one
2. $P \sim Q$ implies $P \approx Q$

Examples?
Proof?

Example

A	$\stackrel{\text { def }}{=}$	$a \cdot A^{\prime}$	$(=a . \bar{b} \cdot A)$	E	$\stackrel{\text { def }}{=}$
A^{\prime}	$\stackrel{\text { def }}{=}$	$\bar{b} \cdot A$		E^{\prime}	
B	$\stackrel{\text { def }}{=}$	$b \cdot B^{\prime}$	$(=b . \bar{c} \cdot B)$	E^{\prime}	$\stackrel{\text { def }}{=}$
$=$	$E^{\prime \prime}$	$\stackrel{\text { def }}{=}$	$\bar{c} \cdot E^{\prime \prime}$		
B^{\prime}	$\stackrel{\text { def }}{=}$	$\bar{c} \cdot B$			

Prove that $(\boldsymbol{\nu} b)(A \mid B) \approx E$.

Some Inequivalences

$$
P=a+b
$$

$Q=a+\tau . b$
$R=\tau . a+\tau . b$

Some Equivalences

Some Equations

Theorem:

Let P be any process.
Let N, M any summations. Then:

1. $P \approx \tau$. P
2. $M+N+\tau . N \approx M+\tau . N$
3. $M+\alpha \cdot P+\alpha(\tau . P+N) \approx M+\alpha(\tau . P+N)$

Congruence Properties

Proposition:

Weak bisimilarity is a process congruence, i.e., ...

Example:

\square Observe $b \approx \tau . b$!
\square Let $C[\cdot]=a+[\cdot]$.
Compare $C[b]=a+b \stackrel{?}{\approx} a+\tau . b=C[\tau . b]!$

Two-Place Buffers

Buff $_{s}^{(1)}(\vec{a}) \quad: \quad$ 1-place buffer containing s, where $\vec{a}=\{\mathrm{in}$, out $\}$
Buff $_{\epsilon}^{(1)}(\vec{a}) \stackrel{\text { def }}{=} \operatorname{in}(x)$.Buff ${ }_{x}^{(1)}\langle\vec{a}\rangle$
Buff $_{v}^{(1)}(\vec{a}) \stackrel{\text { def }}{=} \overline{\text { out }}\langle v\rangle$.Buff ${ }_{e}^{(1)}\langle\vec{a}\rangle$
Buff ${ }_{s}^{(2)}(\vec{a}) \quad: \quad$ 2-place buffer containing s-SPECIFICATION
Buff $_{e}^{(2)}(\vec{a}) \stackrel{\text { def }}{=} \operatorname{in}(x)$.Buff ${ }_{x}^{(2)}\langle\vec{a}\rangle$
Buff $_{v}^{(2)}(\vec{a}) \stackrel{\text { def }}{=} \overline{o u t}\langle v\rangle$. Buff $_{e}^{(2)}\langle\vec{a}\rangle+\operatorname{in}(w)$. Buff $_{w v}^{(2)}\langle\vec{a}\rangle$
$\operatorname{Buff}_{w v}^{(2)}(\vec{a}) \quad \stackrel{\text { def }}{=} \overline{\text { out }^{2}}\langle w\rangle$. Buff ${ }_{v}^{(2)}\langle\vec{a}\rangle$
Bluff $_{s}^{(2)}(\vec{a}) \quad$: \quad 2-place buffer containing s-IMPLEMENTATION Bluff $_{\epsilon}^{(2)}(\vec{a}) \quad \stackrel{\text { def }}{=}(\boldsymbol{\nu} \mathbf{x})\left(\right.$ Buff $^{(1)}\langle$ in, x$\rangle \mid$ Buff $^{(1)}\langle\mathrm{x}$, out $\left.\rangle\right)$
\square prove that Buff ${ }_{\epsilon}^{(2)}\langle\vec{a}\rangle \approx \operatorname{Bluff}_{\epsilon}^{(2)}\langle\vec{a}\rangle$

Unique Solution of Equations

Theorem:

Let $\vec{X}=X_{1}, X_{2}, \ldots$ be a (possibly infinite) sequence of process variables. In the equations

$$
\begin{aligned}
X_{1} & \approx \alpha_{11} \cdot X_{k(11)}+\cdots+\alpha_{1 n_{1}} \cdot X_{k\left(1 n_{1}\right)} \\
X_{2} & \approx \alpha_{21} \cdot X_{k(11)}+\cdots+\alpha_{2 n_{1}} \cdot X_{k\left(2 n_{1}\right)} \\
\cdots & \approx \cdots
\end{aligned}
$$

assume that $\alpha_{i j} \neq \tau$. Then, up to \approx, there is a unique sequence P_{1}, P_{2}, \ldots of processes which satisfies the equations.

