Concurrency: Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004

Uwe Nestmann

EPFL-LAMP

Concurrency:Languages, Programming and Theory – Equivalences for CCS – Session 11 – January 14, 2004 – (produced on March 4, 2004, 18:46) – p.1/20

Bisimulation on CCS

- \Box check out Session 4, again
- □ add 1+1 ...

"Algebraic" Properties (I)

- $\Box \ \beta.P + \beta.P + M \sim \beta.P + M$
- \Box ($\boldsymbol{\nu}a$) $a.P \sim \mathbf{0}$
- $\Box (\boldsymbol{\nu} a) \,\overline{a} . P \sim \mathbf{0}$
- $\Box (\boldsymbol{\nu}c) (a.c.P \mid b.\overline{c}.Q) \sim (\boldsymbol{\nu}c) (a.c.Q \mid b.\overline{c}.P)$
- □ ...
- \Box Why algebraic ?

"Algebraic" Properties (II)

$$\Box \ a \mid b \sim a.b + b.a$$

$$\exists \text{ For all } P \in \mathcal{P}, P \sim \sum \{ \beta . Q \mid P \xrightarrow{\beta} Q \}.$$

 \Box For all $n \ge 0$ and $P_1, \ldots, P_n \in \mathcal{P}$:

$$P_{1}|\cdots|P_{n} \sim \begin{cases} \sum \{ \beta.(P_{1}|\cdots|P_{i}'|\cdots|P_{n}) \\ |1 \leq i \leq n, P_{i} \xrightarrow{\beta} P_{i}' \} \\ + \\ \sum \{ \tau.(P_{1}|\cdots|P_{i}'|\cdots|P_{j}'|\cdots|P_{n}) \\ |1 \leq i < j \leq n, P_{i} \xrightarrow{\lambda} P_{i}', P_{j} \xrightarrow{\overline{\lambda}} P_{j}' \} \end{cases}$$

"Algebraic" Properties (III)

For all $n \ge 0$, $P_1, \ldots, P_n \in \mathcal{P}$, and \vec{a} :

$$(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P_n) \sim \begin{cases} \sum \{ \beta.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P'_i|\cdots|P_n) \\ |1 \leq i \leq n, P_i \xrightarrow{\beta} P'_i, \text{ and } \beta, \overline{\beta} \notin \vec{a} \} \\ + \\ \sum \{ \tau.(\boldsymbol{\nu}\vec{a}) (P_1|\cdots|P'_i|\cdots|P'_j|\cdots|P_n) \\ |1 \leq i < j \leq n, P_i \xrightarrow{\lambda} P'_i, P_j \xrightarrow{\overline{\lambda}} P'_j \} \end{cases}$$

Expansion Law ! (also called: *Interleaving*) Compare to the notions of *standard forms* in Milner's book: every process term can be transformed into a form that matches the left-hand side of the above equation.

Process Contexts

<u>Definition</u>: A process context $C[\cdot]$ is (precisely) defined by the following syntax:

$$C[\cdot] ::= [\cdot] | \alpha.C[\cdot] + M | M + \alpha.C[\cdot] | (\nu a) C[\cdot] | C[\cdot]|P | P|C[\cdot]$$

The elementary contexts are

 $\alpha [\cdot] + M$, $M + \alpha [\cdot]$, $(\nu a) [\cdot]$, $[\cdot]|P$, $P|[\cdot]$.

C[Q] denotes the result of filling the hole $[\cdot]$ of $C[\cdot]$ with process Q.

Process congruence

<u>Definition:</u>(Process congruence) Let \cong be an *equivalence relation* over \mathcal{P} .

Then \cong is said to be a *process congruence*, if for *all* contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$.

Process congruence (II)

Proposition:

An arbitrary equivalence relation \cong is a process congruence if, and only if, it is preserved by all *elementary contexts*; i.e., if $P \cong Q$, then

$$\alpha.P + M \cong \alpha.Q + M \qquad P|R \cong Q|R$$
$$M + \alpha.P \cong M + \alpha.Q \qquad R|P \cong R|Q$$
$$(\boldsymbol{\nu}a) P \cong (\boldsymbol{\nu}a) Q.$$

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Congruence Properties

Proposition:

Bisimilarity is a process congruence, i.e., ...

Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single distinguished *internal action* symbol, say: τ , as is the case for our language of concurrent process expressions. Then:

"Different internal behavior" should "not count" !

Definition:(observations / weak actions)

1.
$$\Rightarrow \stackrel{\text{def}}{=} \stackrel{\tau}{\longrightarrow} *$$

2. $\stackrel{\lambda}{\Rightarrow} \stackrel{\text{def}}{=} \Rightarrow \stackrel{\lambda}{\longrightarrow} \Rightarrow$

Weak Simulation

Definition:

 \mathcal{S} is a weak simulation iff, whenever $P \mathcal{S} Q$,

$$\Box \text{ if } P \xrightarrow{\tau} P' \text{ then there is } Q' \in \mathcal{P}$$

such that $Q \Rightarrow Q' \text{ and } P' \mathcal{S} Q'.$

□ if
$$P \xrightarrow{\Lambda} P'$$
 then there is $Q' \in \mathcal{P}$
such that $Q \xrightarrow{\lambda} Q'$ and $P' S Q'$.

q weakly simulates p, if there is a weak simulation S such that p S q.

Example:

Prove that $Q = \tau.a.\tau.b.Q$ weakly simulates P = a.b.P. Prove that P = a.b.P weakly simulates $Q = \tau.a.\tau.b.Q$.

Weak Bisimulation

<u>Definition:</u>(* straightforward / should be no surprise *) A binary relation \mathcal{B} is *a* **weak bisimulation** if both \mathcal{B} and its converse \mathcal{B}^{-1} are weak simulations.

P and *Q* are weakly bisimilar, weakly equivalent, or observation equivalent, written $P \approx Q$, if there exists a weak bisimulation \mathcal{B} with $P \mathcal{B} Q$.

Alternatively:

 $\approx \stackrel{\text{def}}{=} \bigcup \{ \mathcal{B} \mid \mathcal{B} \text{ is weak bisimulation } \}$

Proposition:

- 1. \approx is itself a weak bisimulation.
- 2. \approx is an equivalence relation.

Strong vs Weak

- 1. every strong simulation is also a weak one
- **2.** $P \sim Q$ implies $P \approx Q$

Examples ?

Proof?

Example

 $A \stackrel{\text{def}}{=} a.A' \quad (= a.\overline{b}.A)$ $A' \stackrel{\text{def}}{=} \overline{b}.A$ $B \stackrel{\text{def}}{=} b.B' \quad (= b.\overline{c}.B)$ $B' \stackrel{\text{def}}{=} \overline{c}.B$

$$E \stackrel{\text{def}}{=} a.E'$$
$$E' \stackrel{\text{def}}{=} a.E'' + \overline{c}.E$$
$$E'' \stackrel{\text{def}}{=} \overline{c}.E'$$

Some Inequivalences

Some Equivalences

Some Equations

Theorem:

Let P be any process. Let N, M any summations. Then:

- 1. $P \approx \tau . P$
- **2.** $M + N + \tau N \approx M + \tau N$
- **3.** $M + \alpha P + \alpha (\tau P + N) \approx M + \alpha (\tau P + N)$

Congruence Properties

Proposition:

Weak bisimilarity is a process congruence, i.e., ...

Example:

$$\Box$$
 Observe $b \approx \tau.b$!

$$\Box$$
 Let $C[\cdot] = a + [\cdot].$

Compare
$$C[b] = \boxed{a+b \stackrel{?}{\approx} a+\tau.b} = C[\tau.b]$$
 !

Two-Place Buffers

$Buff^{(1)}_s(ec{a})$	•	1-place buffer containing s , where $ec{a}=\{in,out\}$
$Buff_\epsilon^{(1)}(ec{a})$	$\stackrel{\text{def}}{=}$	$in(x).Buff_x^{(1)}\langle \vec{a} \rangle$
$Buff_v^{(1)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$\overline{\operatorname{out}}\langle v\rangle$.Buff $_{\epsilon}^{(1)}\langle \vec{a} \rangle$
$Buff^{(2)}_s(ec{a})$	•	2-place buffer containing s — SPECIFICATION
$Buff_\epsilon^{(2)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$\operatorname{in}(x).\operatorname{Buff}_{x}^{(2)}\langle \vec{a} \rangle$
$Buff_v^{(2)}(ec{a})$	$\stackrel{\text{def}}{=}$	$\overline{out}\langle v \rangle.Buff_{\epsilon}^{(2)}\langle \vec{a} \rangle + in(w).Buff_{wv}^{(2)}\langle \vec{a} \rangle$
$Buff_{wv}^{(2)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$\overline{\operatorname{out}}\langle w \rangle.\operatorname{Buff}_v^{(2)}\langle \vec{a} \rangle$
$Bluff^{(2)}_s(ec{a})$	•	2-place buffer containing s — IMPLEMENTATION
$Bluff_\epsilon^{(2)}(ec{a})$	$\stackrel{\mathrm{def}}{=}$	$(\mathbf{ u}\mathbf{x})\left(\ Buff^{(1)}\langle \ in,\mathbf{x} \ angle Buff^{(1)}\langle \ \mathbf{x},out \ angle \ ight)$

 \Box prove that $\operatorname{Buff}_{\epsilon}^{(2)}\langle \vec{a} \rangle \approx \operatorname{Bluff}_{\epsilon}^{(2)}\langle \vec{a} \rangle$

Unique Solution of Equations

Theorem:

Let $\vec{X} = X_1, X_2, \dots$ be a (possibly infinite) sequence of process variables. In the equations

$$X_1 \approx \alpha_{11} \cdot X_{k(11)} + \dots + \alpha_{1n_1} \cdot X_{k(1n_1)}$$

$$X_2 \approx \alpha_{21} \cdot X_{k(11)} + \dots + \alpha_{2n_1} \cdot X_{k(2n_1)}$$

$$\dots \approx \dots$$

assume that $\alpha_{ij} \neq \tau$. Then, up to \approx , there is a unique sequence P_1, P_2, \ldots of processes which satisfies the equations.