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Bisimulation on CCS

� check out Session 4, again

� add 1+1 . . .
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“Algebraic” Properties (I)

� β.P + β.P + M ∼ β.P + M

� (νa) a.P ∼ 0

� (νa) a.P ∼ 0

� (νc) ( a.c.P | b.c.Q ) ∼ (νc) ( a.c.Q | b.c.P )

� . . .

� Why algebraic ?
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“Algebraic” Properties (II)

� a | b ∼ a.b + b.a

� For all P ∈ P, P ∼
∑

{ β.Q | P
β

−−→ Q }.

� For all n ≥ 0 and P1, . . . , Pn ∈ P:

P1| · · · |Pn ∼



































∑

{ β.( P1| · · · |P
′

i | · · · |Pn )

| 1≤i≤n, Pi

β
−−→ P ′

i }

+
∑

{ τ .( P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn )

| 1≤i<j≤n, Pi

λ
−−→ P ′

i , Pj

λ
−−→ P ′

j }
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“Algebraic” Properties (III)

For all n ≥ 0, P1, . . . , Pn ∈ P, and ~a:

(ν~a) ( P1| · · · |Pn ) ∼



































∑

{ β.(ν~a) ( P1| · · · |P
′

i | · · · |Pn )

| 1≤i≤n, Pi

β
−−→ P ′

i , and β, β 6∈ ~a }

+
∑

{ τ .(ν~a) ( P1| · · · |P
′

i | · · · |P
′

j | · · · |Pn )

| 1≤i<j≤n, Pi

λ
−−→ P ′

i , Pj

λ
−−→ P ′

j }

Expansion Law ! (also called: Interleaving)
Compare to the notions of standard forms in Milner’s book:
every process term can be transformed into a form
that matches the left-hand side of the above equation.
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Process Contexts

Definition: A process context C[·] is (precisely) defined by the
following syntax:

C[·] ::= [·]
∣

∣ α.C[·] + M
∣

∣ M + α.C[·]
∣

∣ (νa) C[·]
∣

∣ C[·]|P
∣

∣ P |C[·]

The elementary contexts are
α.[·] + M , M + α.[·], (νa) [·], [·]|P , P |[·].

C[Q] denotes the result of
filling the hole [·] of C[·] with process Q.
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Process congruence

Definition: (Process congruence)
Let ∼= be an equivalence relation over P.

Then ∼= is said to be a process congruence, if
for all contexts C[·],
P ∼= Q implies C[P ] ∼= C[Q].
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Process congruence (II)

Proposition:
An arbitrary equivalence relation ∼= is a process congruence
if, and only if, it is preserved by all elementary contexts;
i.e., if P ∼= Q, then

α.P + M ∼= α.Q + M

M + α.P ∼= M + α.Q

P |R ∼= Q|R

R|P ∼= R|Q

(νa) P ∼= (νa) Q .

Note:
For proving that an equivalence relation is a congruence,
the elementary contexts suffice.
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Congruence Properties

Proposition:
Bisimilarity is a process congruence, i.e., . . .
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Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single
distinguished internal action symbol, say: τ , as is the case for
our language of concurrent process expressions. Then:
“Different internal behavior” should “not count” !

Definition: ( observations / weak actions )

1. =⇒
def
=

τ
−−→ ∗

2. λ
==⇒

def
= =⇒

λ
−−→ =⇒
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Weak Simulation

Definition:
S is a weak simulation iff , whenever P S Q,

� if P
τ

−−→ P ′ then there is Q′ ∈ P
such that Q =⇒ Q′ and P ′ S Q′.

� if P
λ

−−→ P ′ then there is Q′ ∈ P

such that Q
λ

==⇒ Q′ and P ′ S Q′.

q weakly simulates p,
if there is a weak simulation S such that p S q.

Example:
Prove that Q = τ.a.τ.b.Q weakly simulates P = a.b.P .
Prove that P = a.b.P weakly simulates Q = τ.a.τ.b.Q.
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Weak Bisimulation

Definition: (* straightforward / should be no surprise *)
A binary relation B is a weak bisimulation
if both B and its converse B−1 are weak simulations.

P and Q are weakly bisimilar , weakly equivalent , or
observation equivalent , written P ≈ Q,
if there exists a weak bisimulation B with P B Q.

Alternatively:

≈
def
=

⋃

{ B | B is weak bisimulation }

Proposition:

1. ≈ is itself a weak bisimulation.

2. ≈ is an equivalence relation.
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Strong vs Weak

1. every strong simulation is also a weak one

2. P ∼ Q implies P ≈ Q

Examples ?

Proof ?
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Example

A
def
= a.A′ (= a.b.A)

A′ def
= b.A

B
def
= b.B′ (= b.c.B)

B′ def
= c.B

E
def
= a.E′

E′ def
= a.E′′ + c.E

E′′ def
= c.E′

Prove that (νb)(A|B) ≈ E.

(νb)(A′|B)

τ

��

(νb)(A|B)

a
88qqqqqqqqq

(νb)(A′|B′)

c
ffNNNNNNNNN

(νb)(A|B′)

c
ffMMMMMMMMM

a
88ppppppppp

E
a //

E′

c
oo

a
// E′′

coo
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Some Inequivalences
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P = a + b Q = a + τ.b R = τ.a + τ.b
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Some Equivalences
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τ.a ≈ a a + τ.a ≈ τ.a a.c + a.(b + τ.c)

≈ a.(b + τ.c)
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Some Equations

Theorem:
Let P be any process.
Let N,M any summations. Then:

1. P ≈ τ.P

2. M + N + τ.N ≈ M + τ.N

3. M + α.P + α(τ.P + N) ≈ M + α(τ.P + N)
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Congruence Properties

Proposition:
Weak bisimilarity is a process congruence, i.e., . . .

Example:

� Observe b ≈ τ.b !

� Let C[·] = a + [·].

Compare C[b] = a + b
?
≈ a + τ.b = C[τ.b] !
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Two-Place Buffers

Buff
(1)
s (~a ) : 1-place buffer containing s, where ~a = {in, out}

Buff
(1)
ε (~a )

def
= in(x).Buff

(1)
x 〈~a 〉

Buff
(1)
v (~a )

def
= out〈v〉.Buff

(1)
ε 〈~a 〉

Buff
(2)
s (~a ) : 2-place buffer containing s — SPECIFICATION

Buff
(2)
ε (~a )

def
= in(x).Buff

(2)
x 〈~a 〉

Buff
(2)
v (~a )

def
= out〈v〉.Buff

(2)
ε 〈~a 〉 + in(w).Buff

(2)
wv〈~a 〉

Buff
(2)
wv(~a )

def
= out〈w〉.Buff

(2)
v 〈~a 〉

Bluff
(2)
s (~a ) : 2-place buffer containing s — IMPLEMENTATION

Bluff
(2)
ε (~a )

def
= (νx)

(

Buff(1)〈 in, x 〉|Buff(1)〈 x, out 〉
)

� prove that Buff
(2)
ε 〈~a 〉 ≈ Bluff

(2)
ε 〈~a 〉
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Unique Solution of Equations

Theorem:
Let ~X = X1, X2, . . . be a (possibly infinite) sequence of process
variables. In the equations

X1 ≈ α11.Xk(11) + · · · + α1n1
.Xk(1n1)

X2 ≈ α21.Xk(11) + · · · + α2n1
.Xk(2n1)

· · · ≈ · · ·

assume that αij 6= τ . Then, up to ≈, there is a unique sequence
P1, P2, . . . of processes which satisfies the equations.
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