Concurrency: Languages, Programming and Theory

Equivalences for Concurrency
 Session 10 – January 7, 2004

Uwe Nestmann

EPFL-LAMP

Repetition of Algebraic Notions

relations/functions
□ composition
□ comparison, containment
preorder/equivalence
□ reflexivity
□ symmetry
□ transitivity
□ kernel of a (reflexive) preorder
□ comparison, containment vs fine/coarse
congruence
□ by definition?

Automata

An automaton $A = (Q, q_0, F, T)$ over an action alphabet Act:

- \square a set $Q = \{q_0, q_1 \ldots\}$: the **states**
- \square a state $q_0 \in Q$: the start state
- \square a subset $F \subseteq Q$: the **accepting states**
- \square a subset $T \subseteq (Q \times Act \times Q)$: the **transitions**

A transition $(q, \alpha, q') \in T$ is also written $q \stackrel{\alpha}{\longrightarrow} q'$.

Example Automaton

```
Let Act be \{a, b, c\}.
Let A be defined as
 \{q_0,q_1,q_2,q_3\},\
     q_0,
     \{q_1\},\
     \{(q_0,b,q_3),(q_0,c,q_3),(q_0,a,q_1),
         (q_1, c, q_0), (q_1, a, q_3), (q_1, b, q_2),
         (q_2, c, q_0), (q_2, a, q_3), (q_2, b, q_3),
         (q_3, c, q_3), (q_3, a, q_3), (q_3, b, q_3),
```

Automata (II)

An automaton A is

- \square **finite-state**, if Q is finite, and
- □ **deterministic** if for each pair $(q, \alpha) \in Q \times Act$ there is **exactly one transition** $q \xrightarrow{\alpha} q'$. (Note the similarity to a function $Q \times Act \rightarrow Q$.)

Question: Would the formulation "at most one transition" yield less deterministic automata?

Note: "Complete" an automaton?

Behavior: Language of an Automaton

Let A be an automaton over Act. Let $s = \alpha_1 \dots \alpha_n$ be a string over Act. Then:

- \square A is said to **accept** s, if there is a path in A from q_0 to some accepting state whose arcs are labeled successively $\alpha_1 \dots \alpha_n$.
- \square The **language** of A, denoted by \widehat{A} , is the set of strings accepted by A.

 ϵ denotes the empty string.

Fact: The language \widehat{A} of any finite-state automaton A is *regular*.

Regular Sets

(* a mathematical model *)

Definition: A set of strings over *Act* is **regular** if it can be built from

- \square the **empty set** \emptyset and the **singleton** sets $\{\alpha\}$ ($\forall \alpha \in Act$),
- □ using the operations of
 - union (∪),
 - concatenation (·), and
 - iteration (*).

$$S_1 \cdot S_2 \stackrel{\text{def}}{=} \{s_1 \cdot s_2 \mid s_1 \in S_1 \land s_2 \in S_2\}$$

 $S^* \stackrel{\text{def}}{=} \{\epsilon\} \cup S \cup S \cdot S \cup S \cdot (S \cdot S) \cup \dots$

In regular sets, we sometimes write α for $\{\alpha\}$ and ϵ for $\{\epsilon\}$.

Regular Expressions

(* syntax to indicate the elements of the mathematical model *)

<u>Definition:</u> The set of **regular expressions** over *Act* is generated by the following grammar:

$$E ::= \epsilon \mid \alpha \mid E + E \mid E \cdot E \mid E^*$$

where $\alpha \in Act$.

In regular expressions, we often write $\alpha\beta$ for $\alpha \cdot \beta \dots$

regular expressions	regular sets
(a+b)c, $ac+bc$	$\{ac,bc\}$
a + bc	$\{a,bc\}$

"Denotational Semantics"

RegExps	\longrightarrow	RegSets
$\llbracket\epsilon rbracket$	$\stackrel{\mathrm{def}}{=}$	$\{\epsilon\}$
$\llbracket \alpha \rrbracket$	$\stackrel{\mathrm{def}}{=}$	$\{\alpha\}$
$\llbracket E_1 + E_2 \rrbracket$	$\stackrel{\mathrm{def}}{=}$	$\llbracket E_1 \rrbracket \cup \llbracket E_2 \rrbracket$
$\llbracket E_1 \cdot E_2 \rrbracket$	$\overset{\mathrm{def}}{=}$	$\llbracket E_1 \rrbracket \cdot \llbracket E_2 \rrbracket$
$[\![E^*]\!]$	$\stackrel{\mathrm{def}}{=}$	$\llbracket E \rrbracket^*$

- □ in the image of the semantics function [], all of \cup , \cdot , and * , are operators on sets so they entail the calculation of the actual set that they represent
- compare to Arithmetic Expressions and Natural Numbers
- □ note that [] is not surjective ... why?

Some Laws on Regular Expressions

$$(E_1 \cdot E_2) \cdot E_3 = E_1 \cdot (E_2 \cdot E_3)$$

$$E \cdot \epsilon = E$$

$$E \cdot \emptyset = \emptyset$$

$$(E_1 + E_2) \cdot E_3 = E_1 \cdot E_3 + E_2 \cdot E_3$$

 $E_3 \cdot (E_1 + E_2) = E_3 \cdot E_1 + E_3 \cdot E_2$

$$E_1 \cdot (E_2 \cdot E_1)^* = (E_1 \cdot E_2)^* \cdot E_1$$

Be Careful ...

Note:

The regular set \emptyset means "no path". But: The regular expression ϵ means "empty path".

$$\emptyset \neq \{\epsilon\}$$

As an example, compare $\{\alpha\beta\} \cdot \{\epsilon\}$ with $\{\alpha\beta\} \cdot \emptyset$.

Arden's rule

Theorem:

For any sets of strings S and T, the equation

$$X = S \cdot X + T$$
 has $X = S^* \cdot T$

$$X = S^* \cdot T$$

as a **solution**.

Moreover, this solution is unique if $\epsilon \notin S$.

Example Automaton

Determine the language of the previous automaton as the regular expression describing the strings accepted in the initial state.

Write down a set of equations, one equation for each state.

Solve the set of equations ...

Determinism / Nondeterminism

Analyze the two automata of § 2.4 of [Mil99].

Message1:

Language equivalence is blind for nondeterminism!

In fact, every nondeterministic automaton can be converted into a determinstic one that accepts the same language.

Message2:

Language equivalence is blind for deadlocks!

Example?

Message3 (less important):

Language equivalence requires accepting states.

Labeled Transition Systems

Definition:

An LTS L = (Q, T) over an action alphabet Act.

- \square a set of **states** $Q = \{q_0, q_1 \ldots\}$
- \square a ternary transition relation $T \subseteq (Q \times Act \times Q)$

A transition $(q, \alpha, q') \in T$ is also written $q \xrightarrow{\alpha} q'$.

If $q \xrightarrow{\alpha_1} q_1 \cdots \xrightarrow{\alpha_n} q_n$ we call q_n a derivative of q.

Equivalence on LTS?

Example:Compare p_0 and q_0 in

```
{ (p_0, a, p_1), (p_1, b, p_2), (p_1, c, p_3), (q_0, a, q_1), (q_0, a, q'_1), (q_1, b, q_2), (q'_1, c, q_3) }
```

Induce simulation of paths through step-by-step simulation of actions ...

(Strong) Simulation on LTS

Definition:(learn it by heart!)

Let (Q,T) be an LTS.

1. Let S be a binary relation over Q. S is a **(strong) simulation** over (Q,T) if, whenever p S q,

if $p \stackrel{\alpha}{\longrightarrow} p'$ then there is $q' \in Q$ such that $q \stackrel{\alpha}{\longrightarrow} q'$ and $p' \mathrel{\mathcal{S}} q'$.

2. q (strongly) simulates p, written $p \leq q$, if there is a (strong) simulation S such that p S q.

The relation \leq is sometimes called *similarity*.

Properties of Simulations

Lemma:

If S_1 and S_2 are simulations, then

- \square $\mathcal{S}_1 \cup \mathcal{S}_2$ is also a simulation.
- \square $S_1 \cap S_2$ is also a simulation ?
- \square S_1S_2 is also a simulation ?

Definition:Let (Q, T) be a LTS.

 $\preceq \stackrel{\text{def}}{=} \bigcup \{ \mathcal{S} | \mathcal{S} \text{ is simulation over } (Q, T) \}$

Lemma:

- $\square \leq \text{is the largest simulation over } (Q, T).$
- $\square \leq$ is a reflexive preorder over $Q \times Q$.

Is any simulation a preorder?

Working with Simulation

What do we do with simulations?

- \square exhibiting a simulation: "guessing" a relation S that contains (p,q)
- \Box checking a simulation: check that a given relation S is in fact a simulation.

Fortunately, clever people developed algorithms and respective tools (CWB, ABC) that are good at "guessing" simulations.

In fact, they *generate* relations algorithmically that—by construction—fulfil the property of being a simulation.

Results on (semi-)decidability are very important for such tools.

Home-Working with Simulation

Example: Find all non-trivial simulations in

$$\{(1, b, 2), (1, c, 3), (4, b, 5), (6, b, 7), (6, c, 8), (6, c, 9)\}$$

How many are there?

Trivial pairs are any pairs with elements from $\{2, 3, 5, 7, 8, 9\}$ (because there are no transitions), as well as any identity on $\{1, 4, 6\}$.

Trivial simulations are those that either

- (0) are empty, or
- (1) contain only trivial pairs, or
- (2) contain at least one trivial pair that is not reachable from a contained non-trivial one.

Towards Equivalence

Simulation is only a preorder, thus it allows us to *distinguish* states.

We want instead an equivalence, which would allow us to *equate* states.

The mathematical way: just take the "kernel"

$$p = q$$
 if $p < q$ and $q < p$

However, there are two different natural candidates!

- □ mutual simulation
- bisimulation

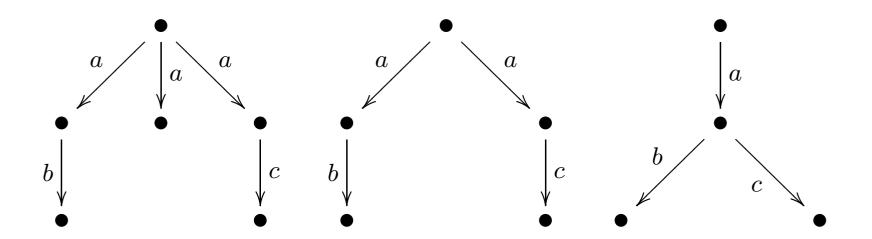
Mutual Simulation: Back and Forth

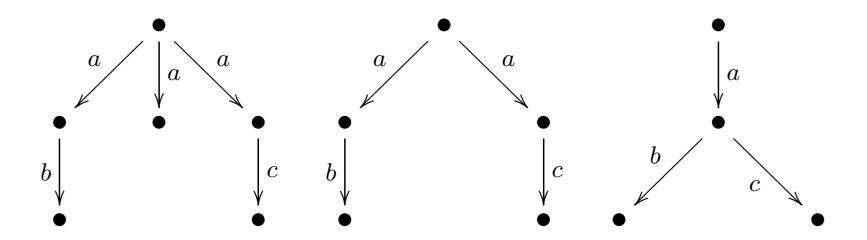
Definition:

Let (Q,T) be a LTS. Let $\{p,q\}\subseteq Q$.

p and q are **mutually similar**, written $p \ge q$, if there is a pair (S_1, S_2) of simulations S_1 and S_2 with $p S_1 q S_2 p$ (i.e., with $p S_1 q$ and $q S_2 p$).

Example: Mut. Sim. vs Lang. Equiv.





Mutual Simulation (II)

Proposition:

 $\square \geqslant$ is an equivalence relation.

Proof?

Typical research-craftsmen work

$$p \geqslant q$$

$$Lang(p) = Lang(q)$$

$$\geq$$
 =_{Lang}

(Strong) Bisimulation

Definition: (learn it by heart!)

A binary relation $\mathcal B$ over Q is a **(strong) bisimulation** over the LTS (Q,T) if both $\mathcal B$ and its converse $\mathcal B^{-1}$ are (strong) simulations.

p and q are (strongly) bisimilar, written $p \sim q$, if there is a (strong) bisimulation \mathcal{B} such that $p \mathcal{B} q$.

Alternatively:

 $\sim \stackrel{\mathrm{def}}{=} \ \bigcup \{ \ \mathcal{B} \ | \ \mathcal{B} \ \text{is (strong) bisimulation over } (\mathcal{Q}, \mathcal{T}) \ \}$

(Strong) Bisimulation (II)

Proposition:

- $\square \sim$ is (itself) a (strong) bisimulation.
- $\square \sim$ is an equivalence relation.

Proof?

Again, typical research-craftsmen work ...

Example

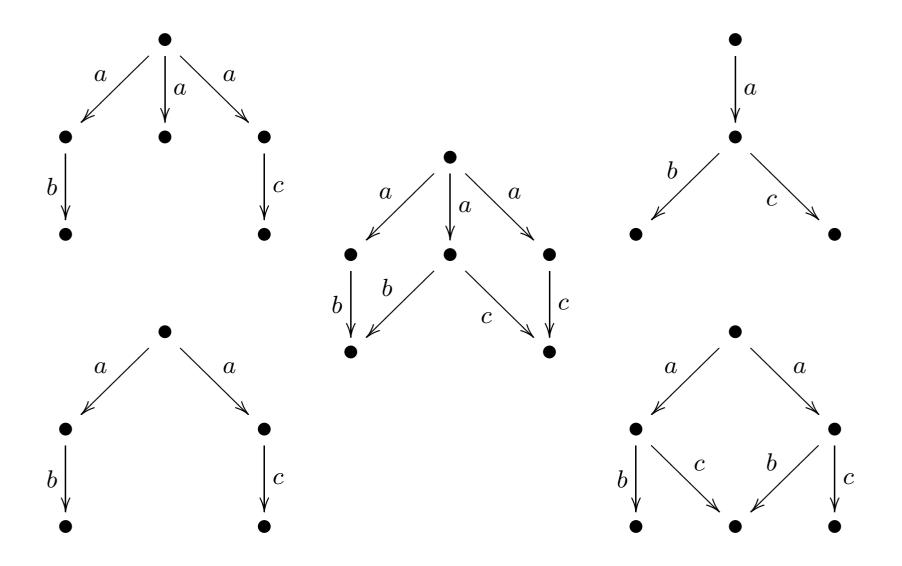
$$\{(1, a, 2), (1, a, 3), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 1), (4, a, 5), (5, a, 5), (5, b, 6), (6, a, 5), (7, a, 8), (8, a, 8), (8, b, 7)\}$$

Prove $1 \sim 4 \sim 6 \sim 7$.

Write out $\sim \dots$

Minimization ?!

Example: Mutual vs Bi



Isomorphism on LTS

Definition:

Let (Q_i, T_i) be two LTS over *Act* for $i \in \{1, 2\}$.

 (Q_1,T_1) and (Q_2,T_2) are **isomorph(ic)**, written $(Q_1,T_1)\cong (Q_2,T_2)$, if there is a **bijection** f on between Q_1 and Q_2 that preserves T, i.e., $f:Q_1\to Q_2$ with $q\stackrel{\alpha}{\longrightarrow} q'$ iff $f(q)\stackrel{\alpha}{\longrightarrow} f(q')$.

Isomorphism on LTS (II)

Proposition:

 $\square \cong$ is an equivalence relation (on the domain of LTSs).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and transitivity . . .

"Problem":

Isomorphism compares two transition systems;
Bisimulation (at least as we have defined it) compares two states.

Redefine $\mathcal{B} \subseteq Q_1 \times Q_2$ to be a bisimulation if \mathcal{B} and \mathcal{B}^{-1} are simulations on their respective domains, i.e., $\mathcal{B}^{-1} \subseteq Q_2 \times Q_1$.

Redefine \sim to the whole domain of LTSs. Be careful with the interpretation of reflexivity, symmetry, and transitivity . . .

1. reachability

$$(Q_1, T_1) = (\{q_1^0, q_1^1, q_1^2\}, \{(q_1^0, a, q_1^1)\})$$

$$(Q_2, T_2) = (\{q_2^0, q_2^1\}, \{(q_2^0, a, q_2^1)\})$$

2. copying

$$(Q_{1}, T_{1}) = (\{q_{1}^{0}, q_{1}^{1}, q_{1}^{2}\},$$

$$\{(q_{1}^{0}, a, q_{1}^{1}), (q_{1}^{1}, b, q_{1}^{2}), (q_{1}^{1}, c, q_{1}^{3})\})$$

$$(Q_{2}, T_{2}) = (\{q_{2}^{0}, q_{2}^{1}, q_{2}^{2}, q_{2}^{3}, \underline{q'_{2}^{1}, q'_{2}^{2}, q'_{2}^{3}}\},$$

$$\{(q_{2}^{0}, a, q_{2}^{1}), (q_{2}^{1}, b, q_{2}^{2}), (q_{2}^{1}, c, q_{2}^{3}),$$

$$(q_{2}^{0}, a, q'_{2}^{1}), (q'_{2}^{1}, b, q'_{2}^{2}), (q'_{2}^{1}, c, q'_{2}^{3})\})$$

3. recursion/unfolding

$$(Q_1, T_1) = (\{q_1^i \mid i \in \mathbb{N}_0\}, \{(q_1^i, a, q_1^{i+1}) \mid i \in \mathbb{N}_0\})$$

$$(Q_2, T_2) = (\{q_2^0\}, \{(q_2^0, a, q_2^0)\})$$

Which is the Best Equivalence?

language equivalence mutual simulatity bisimilarity isomorphism identity

= \cong \sim $\equiv_{
m I}$

To be remembered: What are the intuitive distinguishing aspects between all of these notions of equivalence? (→ Exam ...)