Concurrency: Languages, Programming and Theory
 - Equivalences for Concurrency Session 10 - January 7, 2004

Uwe Nestmann

EPFL-LAMP

Repetition of Algebraic Notions

relations/functions
\square composition
\square comparison, containment
preorder/equivalence
\square reflexivity
\square symmetry
\square transitivity
\square kernel of a (reflexive) preorder
\square comparison, containment vs fine/coarse

congruence

\square by definition?

Automata

An automaton $A=\left(Q, q_{0}, F, T\right)$ over an action alphabet Act:
\square a set $Q=\left\{q_{0}, q_{1} \ldots\right\}$: the states
\square a state $q_{0} \in Q$: the start state
\square a subset $F \subseteq Q$: the accepting states
\square a subset $T \subseteq(Q \times \boldsymbol{A c t} \times Q)$: the transitions
A transition $\left(q, \alpha, q^{\prime}\right) \in T$ is also written $q \xrightarrow{\alpha} q^{\prime}$.

Example Automaton

Let Act be $\{a, b, c\}$. Let A be defined as
($\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$,
q_{0},
$\left\{q_{1}\right\}$,
$\left\{\quad\left(q_{0}, b, q_{3}\right),\left(q_{0}, c, q_{3}\right),\left(q_{0}, a, q_{1}\right)\right.$,
$\left(q_{1}, c, q_{0}\right),\left(q_{1}, a, q_{3}\right),\left(q_{1}, b, q_{2}\right)$,
$\left(q_{2}, c, q_{0}\right),\left(q_{2}, a, q_{3}\right),\left(q_{2}, b, q_{3}\right)$,
$\left(q_{3}, c, q_{3}\right),\left(q_{3}, a, q_{3}\right),\left(q_{3}, b, q_{3}\right)$,
\}
)

Automata (II)

An automaton A is
\square finite-state, if Q is finite, and
\square deterministic if for each pair $(q, \alpha) \in Q \times$ Act there is exactly one transition $q \xrightarrow{\alpha} q^{\prime}$. (Note the similarity to a function $Q \times$ Act $\rightarrow Q$.)

Question: Would the formulation "at most one transition" yield less deterministic automata?

Note:"Complete" an automaton?

Behavior: Language of an Automaton

Let A be an automaton over Act.
Let $s=\alpha_{1} \ldots \alpha_{n}$ be a string over Act. Then:
$\square A$ is said to accept s, if there is a path in A - from q_{0} to some accepting state whose arcs are labeled successively $\alpha_{1} \ldots \alpha_{n}$.
\square The language of A, denoted by \widehat{A}, is the set of strings accepted by A.
ϵ denotes the empty string.

Fact: The language \widehat{A} of any finite-state automaton A is regular.

Regular Sets

(* a mathematical model *)
Definition:A set of strings over Act is regular
if it can be built from
\square the empty set \emptyset and the singleton sets $\{\alpha\}$ ($\forall \alpha \in A c t$),
\square using the operations of

- union (\cup),
- concatenation (•), and
- iteration (*).

$$
\begin{aligned}
& S_{1} \cdot S_{2} \stackrel{\text { def }}{=}\left\{s_{1} \cdot s_{2} \mid s_{1} \in S_{1} \wedge s_{2} \in S_{2}\right\} \\
& S^{*} \stackrel{\text { def }}{=}\{\epsilon\} \cup S \cup S \cdot S \cup S \cdot(S \cdot S) \cup \ldots
\end{aligned}
$$

In regular sets, we sometimes write α for $\{\alpha\}$ and ϵ for $\{\epsilon\}$.

Regular Expressions

(* syntax to indicate the elements of the mathematical model *)
Definition:The set of regular expressions over Act is generated by the following grammar:

$$
E::=\epsilon \left\lvert\, \begin{array}{l|l|l|l}
& E & E \cdot E & E \cdot E
\end{array} E^{*}\right.
$$

where $\alpha \in$ Act.
In regular expressions, we often write $\alpha \beta$ for $\alpha \cdot \beta \ldots$

regular expressions	regular sets
$(a+b) c, a c+b c$	$\{a c, b c\}$
$a+b c$	$\{a, b c\}$

"Denotational Semantics"

RegExps	\rightarrow	RegSets
$\llbracket \epsilon \rrbracket$	$\stackrel{\text { def }}{=}$	$\{\epsilon\}$
$\llbracket \alpha \rrbracket$	$\stackrel{\text { def }}{=}$	$\{\alpha\}$
$\llbracket E_{1}+E_{2} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket E_{1} \rrbracket \cup \llbracket E_{2} \rrbracket$
$\llbracket E_{1} \cdot E_{2} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket E_{1} \rrbracket \cdot \llbracket E_{2} \rrbracket$
$\llbracket E^{*} \rrbracket$	$\stackrel{\text { def }}{=}$	$\llbracket E \rrbracket^{*}$

\square in the image of the semantics function $\llbracket \rrbracket$, all of \cup, \cdot, and *, are operators on sets so they entail the calculation of the actual set that they represent
\square compare to Arithmetic Expressions and Natural Numbers
\square note that $\llbracket \rrbracket$ is not surjective . . . why?

Some Laws on Regular Expressions

$$
\begin{aligned}
\left(E_{1} \cdot E_{2}\right) \cdot E_{3} & =E_{1} \cdot\left(E_{2} \cdot E_{3}\right) \\
E \cdot \epsilon & =E \\
E \cdot \emptyset & =\emptyset \\
\left(E_{1}+E_{2}\right) \cdot E_{3} & =E_{1} \cdot E_{3}+E_{2} \cdot E_{3} \\
E_{3} \cdot\left(E_{1}+E_{2}\right) & =E_{3} \cdot E_{1}+E_{3} \cdot E_{2} \\
& \\
E_{1} \cdot\left(E_{2} \cdot E_{1}\right)^{*} & =\left(E_{1} \cdot E_{2}\right)^{*} \cdot E_{1}
\end{aligned}
$$

Be Careful ...

Note:

The regular set \emptyset means "no path". But: The regular expression ϵ means "empty path".

$$
\emptyset \neq\{\epsilon\}
$$

As an example, compare $\{\alpha \beta\} \cdot\{\epsilon\}$ with $\{\alpha \beta\} \cdot \emptyset$.

Arden's rule

Theorem:

For any sets of strings S and T, the equation

$$
X=S \cdot X+T \quad \text { has } \quad X=S^{*} \cdot T
$$

as a solution.

Moreover, this solution is unique if $\epsilon \notin S$.

Example Automaton

Determine the language of the previous automaton as the regular expression describing the strings accepted in the initial state.

Write down a set of equations, one equation for each state.

Solve the set of equations ...

Determinism / Nondeterminism

Analyze the two automata of $\S 2.4$ of [Mil99].
Message1:
Language equivalence is blind for nondeterminism!
In fact, every nondeterministic automaton can be converted into a determinstic one that accepts the same language.

Message2:
Language equivalence is blind for deadlocks!
Example?
Message3 (less important):
Language equivalence requires accepting states.

Labeled Transition Systems

Definition:

An LTS $L=(Q, T)$ over an action alphabet Act:
\square a set of states $Q=\left\{q_{0}, q_{1} \ldots\right\}$
\square a ternary transition relation $T \subseteq(Q \times \boldsymbol{A c t} \times Q)$
A transition $\left(q, \alpha, q^{\prime}\right) \in T$ is also written $q \xrightarrow{\alpha} q^{\prime}$.
If $q \xrightarrow{\alpha_{1}} q_{1} \cdots \xrightarrow{\alpha_{n}} q_{n}$ we call q_{n} a derivative of q.

Equivalence on LTS ?

Example:Compare p_{0} and q_{0} in

$$
\begin{aligned}
\{ & \left(p_{0}, a, p_{1}\right),\left(p_{1}, b, p_{2}\right),\left(p_{1}, c, p_{3}\right), \\
& \left.\left(q_{0}, a, q_{1}\right),\left(q_{0}, a, q_{1}^{\prime}\right),\left(q_{1}, b, q_{2}\right),\left(q_{1}^{\prime}, c, q_{3}\right)\right\}
\end{aligned}
$$

Induce simulation of paths through step-by-step simulation of actions ...

(Strong) Simulation on LTS

Definition:(learn it by heart!)

Let (Q, T) be an LTS.

1. Let \mathcal{S} be a binary relation over Q. \mathcal{S} is a (strong) simulation over (Q, T) if, whenever $p \mathcal{S} q$,
if $p \xrightarrow{\alpha} p^{\prime}$ then there is $q^{\prime} \in Q$ such that $q \xrightarrow{\alpha} q^{\prime}$ and $p^{\prime} \mathcal{S} q^{\prime}$.
2. q (strongly) simulates p, written $p \preceq q$, if there is a (strong) simulation \mathcal{S} such that $p \mathcal{S} q$.

The relation \preceq is sometimes called similarity.

Properties of Simulations

Lemma:

If \mathcal{S}_{1} and \mathcal{S}_{2} are simulations, then
$\square \mathcal{S}_{1} \cup \mathcal{S}_{2}$ is also a simulation.
$\square \mathcal{S}_{1} \cap \mathcal{S}_{2}$ is also a simulation?
$\square \mathcal{S}_{1} \mathcal{S}_{2}$ is also a simulation?
Definition:Let (Q, T) be a LTS.

$$
\preceq \stackrel{\text { def }}{=} \cup\{\mathcal{S} \mid \mathcal{S} \text { is simulation over }(Q, T)\}
$$

Lemma:

$\square \preceq$ is the largest simulation over (Q, T).
$\square \preceq$ is a reflexive preorder over $Q \times Q$.
Is any simulation a preorder?

Working with Simulation

What do we do with simulations?
\square exhibiting a simulation: "guessing" a relation \mathcal{S} that contains (p, q)
\square checking a simulation: check that a given relation \mathcal{S} is in fact a simulation.

Fortunately, clever people developed algorithms and respective tools (CWB, ABC) that are good at "guessing" simulations.

In fact, they generate relations algorithmically that-by construction-fulfil the property of being a simulation.

Results on (semi-)decidability are very important for such tools.

Home-Working with Simulation

Example:Find all non-trivial simulations in

$$
\{(1, b, 2),(1, c, 3),(4, b, 5),(6, b, 7),(6, c, 8),(6, c, 9)\}
$$

How many are there?
Trivial pairs are any pairs with elements from $\{2,3,5,7,8,9\}$ (because there are no transitions), as well as any identity on $\{1,4,6\}$.

Trivial simulations are those that either (0) are empty, or
(1) contain only trivial pairs, or
(2) contain at least one trivial pair that is not reachable from a contained non-trivial one.

Towards Equivalence

Simulation is only a preorder, thus it allows us to distinguish states.

We want instead an equivalence, which would allow us to equate states.

The mathematical way: just take the "kernel"

$$
p=q \quad \text { if } \quad p<q \quad \text { and } \quad q<p
$$

However, there are two different natural candidates!
\square mutual simulation
\square bisimulation

Mutual Simulation: Back and Forth

Definition:

Let (Q, T) be a LTS. Let $\{p, q\} \subseteq Q$.
p and q are mutually similar, written $p \gtrless q$, if there is a pair $\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)$ of simulations \mathcal{S}_{1} and \mathcal{S}_{2} with $p \mathcal{S}_{1} q \mathcal{S}_{2} p$ (i.e., with $p \mathcal{S}_{1} q$ and $q \mathcal{S}_{2} p$).

Example: Mut. Sim. vs Lang. Equiv.

Mutual Simulation (II)

Proposition:

$\square \gtrless$ is an equivalence relation.

Proof?

Typical research-craftsmen work ...

$$
p \gtrless q
$$

$\operatorname{Lang}(p)=\operatorname{Lang}(q)$
$=$ Lang

(Strong) Bisimulation

Definition:(learn it by heart!)

A binary relation \mathcal{B} over Q is
a (strong) bisimulation over the LTS (Q, T)
if both \mathcal{B} and its converse \mathcal{B}^{-1} are (strong) simulations.
p and q are (strongly) bisimilar, written $p \sim q$,
if there is a (strong) bisimulation \mathcal{B} such that $p \mathcal{B} q$.
Alternatively:

$$
\sim \stackrel{\text { def }}{=} \cup\{\mathcal{B} \mid \mathcal{B} \text { is (strong) bisimulation over }(\mathcal{Q}, \mathcal{T})\}
$$

(Strong) Bisimulation (II)

Proposition:

$\square \sim$ is (itself) a (strong) bisimulation.
$\square \sim$ is an equivalence relation.

Proof?

Again, typical research-craftsmen work ...

Example

$$
\begin{aligned}
& \{(1, a, 2),(1, a, 3),(2, a, 3),(2, b, 1),(3, a, 3),(3, b, 1), \\
& \quad(4, a, 5),(5, a, 5),(5, b, 6),(6, a, 5) \\
& \quad(7, a, 8),(8, a, 8),(8, b, 7)\}
\end{aligned}
$$

Prove $1 \sim 4 \sim 6 \sim 7$.

Write out ~...

Minimization ?!

Example: Mutual vs Bi

Isomorphism on LTS

Definition:

Let $\left(Q_{i}, T_{i}\right)$ be two LTS over Act for $i \in\{1,2\}$.
$\left(Q_{1}, T_{1}\right)$ and (Q_{2}, T_{2}) are isomorph(ic),
written $\left(Q_{1}, T_{1}\right) \cong\left(Q_{2}, T_{2}\right)$,
if there is a bijection f on between Q_{1} and Q_{2} that preserves T, i.e., $f: Q_{1} \rightarrow Q_{2}$ with

$$
q \xrightarrow{\alpha} q^{\prime} \quad \text { iff } \quad f(q) \xrightarrow{\alpha} f\left(q^{\prime}\right) .
$$

Isomorphism on LTS (II)

Proposition:

$\square \cong$ is an equivalence relation (on the domain of LTSs).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and transitivity ...

Isomorphism vs Bisimulation

"Problem":
Isomorphism compares two transition systems; Bisimulation (at least as we have defined it) compares two states.

Redefine $\mathcal{B} \subseteq Q_{1} \times Q_{2}$ to be a bisimulation if \mathcal{B} and \mathcal{B}^{-1} are simulations on their respective domains, i.e., $\mathcal{B}^{-1} \subseteq Q_{2} \times Q_{1}$.

Redefine \sim to the whole domain of LTSs.
Be careful with the interpretation of reflexivity, symmetry, and transitivity ...

Isomorphism vs Bisimulation

1. reachability
$\left(Q_{1}, T_{1}\right)=\left(\left\{q_{1}^{0}, q_{1}^{1}, q_{1}^{2}\right\},\left\{\left(q_{1}^{0}, a, q_{1}^{1}\right)\right\}\right)$
$\left(Q_{2}, T_{2}\right)=\left(\left\{q_{2}^{0}, q_{2}^{1}\right\},\left\{\left(q_{2}^{0}, a, q_{2}^{1}\right)\right\}\right)$

Isomorphism vs Bisimulation

2. copying

$$
\begin{aligned}
\left(Q_{1}, T_{1}\right)= & \left(\left\{q_{1}^{0}, q_{1}^{1}, q_{1}^{2}\right\}\right. \\
& \left.\left\{\left(q_{1}^{0}, a, q_{1}^{1}\right),\left(q_{1}^{1}, b, q_{1}^{2}\right),\left(q_{1}^{1}, c, q_{1}^{3}\right)\right\}\right) \\
\left(Q_{2}, T_{2}\right)=(& \left\{q_{2}^{0}, q_{2}^{1}, q_{2}^{2}, q_{2}^{3}, q_{2}^{\prime}, q_{2}^{2}, q_{2}^{3}\right\} \\
& \left\{\left(q_{2}^{0}, a, q_{2}^{1}\right),\left(q_{2}^{1}, b, q_{2}^{2}\right),\left(q_{2}^{1}, c, q_{2}^{3}\right),\right. \\
& \left.\left.\left(q_{2}^{0}, a, q_{2}^{1}\right),\left(q_{2}^{\prime}, b, q_{2}^{\prime 2}\right),\left(q_{2}^{\prime}, c, q_{2}^{3}\right)\right\}\right)
\end{aligned}
$$

Isomorphism vs Bisimulation

3. recursion/unfolding

$$
\begin{aligned}
& \left(Q_{1}, T_{1}\right)=\left(\left\{q_{1}^{i} \mid i \in \mathbb{N}_{0}\right\},\left\{\left(q_{1}^{i}, a, q_{1}^{i+1}\right) \mid i \in \mathbb{N}_{0}\right\}\right) \\
& \left(Q_{2}, T_{2}\right)=\left(\left\{q_{2}^{0}\right\}, \quad\left\{\left(q_{2}^{0}, a, q_{2}^{0}\right)\right\}\right.
\end{aligned}
$$

Which is the Best Equivalence ?

language equivalence
mutual simulatity
bisimilarity isomorphism identity
\qquad

To be remembered: What are the intuitive distinguishing aspects between all of these notions of equivalence? (\rightarrow Exam ...)

