Concurrency:
Languages, Programming and Theory

— Equivalences for Concurrency —
Session 10 — January 7, 2004

Uwe Nestmann

EPFL-LAMP

Repetition of Algebraic Notions

relations/functions
[1 composition
[1 comparison, containment

preorder/equivalence
I reflexivity
[1 symmetry
[transitivity
[1 kernel of a (reflexive) preorder
[1 comparison, containment vs fine/coarse

congruence
[1 by definition?

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.2/35

Automata

An automaton A = (Q,qo, F,T)
over an action alphabet Act:

0 aset® ={qo,q ...}: the states

[] a state ¢y € @): the start state

[] a subset F' C (): the accepting states

[J asubset T C (Q x Act x Q): the transitions

A transition (¢, «, ¢') € T is also written ¢ el q .

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.3/35

Example Automaton

Let Act be {a, b, c}.
Let A be defined as
({q0,q91,92,q3},

40,

{q
{

|2
(0, b, 43), (g0, ¢, 43), (g0, @, q1),
(q1,¢,90), (q1,a,43), (q1,D, q2),
(@25 ¢,q0), (g2, a,q3), (q2, b, q3),
(), (), ()

q3,¢,q3), (93,a,93), (¢3,0,q3),

Concurrency:Languages, Programming and Theory — Equivalences for Concurrenc

Yy

— Ses!

sion 10 — Janu

ary 7, 2004 — (produced on March 4, 2004, 18:46) — p.4/35

Automata (I1)

An automaton A Is
[finite-state , If Q) is finite, and
[J deterministic if for each pair (¢,a) € @ x Act

there is exactly one transition ¢ Bal q .
(Note the similarity to a function Q x Act — (.)

Question: Would the formulation “at most one transition
yield less deterministic automata?

Note: “Complete” an automaton?

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.5/35

Behavior: Language of an Automaton

Let A be an automaton over Act.
Let s = aq ... «, be a string over Act. Then:

[1 A is said to accept s, if there is a path in A
— from ¢ to some accepting state —
whose arcs are labeled successively a;

] The language of A, denoted by A,
IS the set of strings accepted by A.

¢ denotes the empty string.

Fact: The language A of any finite-state automaton A is regular.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.6/35

Regular Sets

(* a mathematical model *)

Definition: A set of strings over Act is regular

If it can be built from
[0 the empty set () and the singleton sets {a} (Va € Act),

[1 using the operations of
e union (U),
e concatenation (-), and
e iteration (*).

S1 - 59 dgf {81-82|81651/\826SQ}

s* A uUsSuUSSUS(S-S)U...
In regular sets, we sometimes write « for {«a} and e for {¢}.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.7/35

Regular Expressions

(* syntax to indicate the elements of the mathematical model *)

Definition: The set of regular expressions over Act Is
generated by the following grammar:

E :=¢ | o« | E+FE | E-E | E

where o € Act.
In regular expressions, we often write ag fora - 3 ...

regular expressions | regular sets
(@ +b)c, ac + be {ac, bc}
a + bc {a,bc}

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.8/35

“Denotational Semantics”

RegExps — RegSets

[e] j{ {e}
[a] € {a}
[Ei+ E2] < [E]U[B]
[Ey-Ey] € [E]-[E:]
('] € [E)

[in the image of the semantics function | |,
all of U, -, and *, are operators on sets so they entail the
calculation of the actual set that they represent

[J compare to Arithmetic Expressions and Natural Numbers
(1 note that | | Is not surjective ... why?

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.9/35

Some Laws on Regular Expressions

(Fh-FE)-FE3 = FEp-(FEs- Es)
EF-¢e = F
E-0 = 0

(E1—|—E2)-E3 = FEq1-FE3+ Ey- Ej
Fs-(E1+ FEe) = FEs-E1+ FEs- Ey

Fi-(Fy- Ep)*

(Ey - E9)* - Fy

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.10/35

Be Careful ...

Note:
The regular set () means “no path”. But:
The regular expression ¢ means “empty path”.

D # {e}

As an example, compare {a3} - {e} with {aS} - 0.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.11/35

Arden’s rule

Theorem:
For any sets of strings S and T, the equation

X=5-X+T has X=5.T

as a solution .
Moreover, this solution is unique if e ¢ S.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.12/35

Example Automaton

Determine the language of the previous automaton
as the regular expression describing
the strings accepted in the initial state.

Write down a set of equations,
one equation for each state.

Solve the set of equations ...

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.13/35

Determinism / Nondeterminism

Analyze the two automata of 8§ 2.4 of [MIil99].

Messagel:
Language equivalence is blind for nondeterminism!

In fact, every nondeterministic automaton can be converted into
a determinstic one that accepts the same language.

MessageZ2:
Language equivalence is blind for deadlocks!

Example?

Message3 (less important):
Language equivalence requires accepting states.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.14/35

Labeled Transition Systems

Definition:
An LTS L = (Q,T) over an action alphabet Act:

[1 a set of states @ = {qo,q1 ...}

[1 a ternary transition relation 7T C (Q) x Act x Q)

A transition (¢, «, ¢') € T is also written ¢ el q .

If ¢ A, ql - i g, We call ¢,, a derivative of g.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.15/35

Equivalence on LTS ?

Example: Compare py and gg In

{ (p()aaapl)a(plab?pQ)a(placap3)7
(90, a,q1), (90, a,q71), (q1,D,92), (¢}, ¢, q3) }

Induce simulation of paths
through step-by-step simulation of actions . ..

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.16/35

(Strong) Simulation on LTS

Definition: (learn it by heart!)
Let (), T) be an LTS.

1. Let S be a binary relation over Q.
S Is a (strong) simulation over (Q,T) If, whenever p S ¢,

if p ok p’ then there is ¢ € () such that ¢ el g andp’ S ¢ |

2. q (strongly) simulates p, written p < g,
If there Is a (strong) simulation S such that p S g.

The relation < Is sometimes called similarity.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.17/35

Properties of Simulations

Lemma:

If S; and Sy are simulations, then
[J S1 U Sy Is also a simulation.
[0 S1 N Sy Is also a simulation ?
[J S§189 Is also a simulation ?

Definition: Let (Q,7T) be a LTS.

< ® 1 8|S is simulation over (Q,T) }

Lemma:

[J <is the largest simulation over (Q,T).
[1 <'Is a reflexive preorder over () x Q.

Is any simulation a preorder?

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.18/35

Working with Simulation

What do we do with simulations?

[1 exhibiting a simulation:
“guessing” a relation S that contains (p, q)

[J checking a simulation:
check that a given relation S is in fact a simulation.

Fortunately, clever people developed algorithms and respective
tools (CWB, ABC) that are good at “guessing” simulations.

In fact, they generate relations algorithmically that—by
construction—fulfil the property of being a simulation.

Results on (semi-)decidability are very important for such tools.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.19/35

Home-Working with Simulation

Example: Find all non-trivial simulations in

{(1,b,2),(1,¢,3),(4,b,5),(6,b,7),(6,c,8),(6,c,9)}
How many are there ?

Trivial pairs are any pairs with elements from {2,3,5,7,8,9}
(because there are no transitions),
as well as any identity on {1,4,6}.

Trivial simulations are those that either

(0) are empty, or

(1) contain only trivial pairs, or

(2) contain at least one trivial pair that is not reachable from a
contained non-trivial one.

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.20/35

Towards Equivalence

Simulation Is only a preorder,
thus it allows us to distinguish states.

We want instead an equivalence,
which would allow us to equate states.

The mathematical way: just take the “kernel”
p=q If p <q and q<p

However, there are two different natural candidates !

1 mutual simulation
] bisimulation

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.21/35

Mutual Simulation: Back and Forth

Definition:
Let (), T) bealLTS. Let {p,q} C Q.

p and ¢ are mutually similar , written p = ¢,
If there Is a pair (S1, S2) of simulations S; and S
with pS1qSap (i.e., with p S ¢ and qg So p).

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.22/35

Example: Mut. Sim. vs Lang. Equiv.

S
NN

Mutual Simulation (Il)

Proposition:

[J = Is an equivalence relation.

Proof?

Typical research-craftsmen work . ..

pZq Lang(p) = Lang(q)

A

—Lang

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.24/35

(Strong) Bisimulation

Definition: (learn it by heart!)
A binary relation B over () Is
a (strong) bisimulation over the LTS (Q,T)

if both B and its converse B~! are (strong) simulations.

p and g are (strongly) bisimilar , written p ~ ¢,
If there Is a (strong) bisimulation B such that p B g.

Alternatively:

~ % | B|Bis (strong) bisimulation over (Q,7) }

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.25/35

(Strong) Bisimulation (I1)

Proposition:

1 ~ Is (itself) a (strong) bisimulation.
[1 ~ Is an equivalence relation.

Proof?

Again, typical research-craftsmen work . ..

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.26/35

Example

), (3,a,3),(3,b,1),

Prove 1l ~4 ~ 6~ 7.
Write out ~ . ..

Minimization ?!

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.27/35

Example: Mutual vs B

Y

%
.
e

P
N
N

N A

o<——©
@)
S
o<—©
Q
(@)
oO<—©

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.28/35

Isomorphismon LTS

Definition:
Let (Q;,T;) be two LTS over Act for i € {1,2}.

(Q1,T7) and (Q2,T>) are iIsomorph(ic) ,

written (Q1,71) = (Q2, 1),
If there is a bijection f on between)1 and Q-
that preserves T, i.e., f : ()1 — Q2 With

¢ —q iff flo) — F(d).

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.29/35

Isomorphism on LTS (lI)

Proposition:

[1 = is an equivalence relation
(on the domain of LTSs).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and
transitivity ...

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.30/35

Isomorphism vs Bisimulation

“Problem?”:
Isomorphism compares two transition systems;

Bisimulation (at least as we have defined it) compares two
states.

Redefine BC (1 x ()9 to be a bisimulation
if Band B~! are simulations on their respective domains, i.e.,

B~1C Qs x Q.

Redefine ~ to the whole domain of LTSs.

Be careful with the interpretation of reflexivity, symmetry, and
transitivity . ..

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.31/35

Isomorphism vs Bisimulation

1. reachability

(Q1,T1) = ({Ch 511 C]1}>{(C]1aa Cll)})
(Q2,T2) = ({9, 43}, {(43, @, 43)})

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.32/35

Isomorphism vs Bisimulation

2. copying
(Q1,T1) = ({ ¢}, af. 47 }.
{ (&), a,q1), (a1,0,47). (a1, ¢,q}) })
(Q2,T2) = ({ ¢, 03, 43,43, ¢'5. 45,45 },
{ (63,0,43), (43,6, 43), (43, ¢, 43).
(63, a,d'5), (¢'3,0,d'3), (d'5,¢,d5) })

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.33/35

Isomorphism vs Bisimulation

3. recursion/unfolding
(Q1,T1) = ({d} | i € No}.{(df,a, ;") | i € No})
(Q2,T2) = ({43}, {(g9,0,49)})

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.34/35

Which is the Best Equivalence ?

language equivalence
mutual simulatity
bisimilarity
Isomorphism

identity

12

To be remembered:
What are the intuitive distinguishing aspects
between all of these notions of equivalence? (— Exam ...)

Concurrency:Languages, Programming and Theory — Equivalences for Concurrency — Session 10 — January 7, 2004 — (produced on March 4, 2004, 18:46) — p.35/35

	Repetition of Algebraic Notions
	 Automata
	 Example Automaton
	 Automata (II)

	 Behavior: emph {Language} of an Automaton
	 Regular Sets
	 Regular Expressions
	 ``Denotational Semantics''
	 Some Laws on Regular Expressions
	 Be Careful etc
	 Arden's rule
	 Example Automaton
	 Determinism / Nondeterminism
	Labeled Transition Systems
	 Equivalence on LTS ?
	 (Strong)
Simulation on LTS
	 Properties of Simulations
	 Working with Simulation
	 	extcolor {red}{Home-}	extcolor {blue}{Working with Simulation}
	 Towards Equivalence
	Mutual Simulation: Back and Forth
	 Example: Mut. Sim. vs Lang. Equiv.
	Mutual Simulation (II)
	(Strong)
Bisimulation
	(Strong)
Bisimulation (II)
	 Example
	 Example: Mutual vs Bi
	 Isomorphism on LTS
	 Isomorphism on LTS (II)

	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Which is the Best Equivalence ?

