Concurrency: Languages,
Programming and Theory

— Functional Programming and
Lambda Calculus —

Session 1 — Oct 22, 2003

Martin Odersky

EPFL-LAMP

Part . Functional Programming

[1 A pure functional program consists of data, functions, and
an expression which describes a result.

(1 Missing: variables, assignment, side-effects.

[1 A processor of a functional program is essentially a
calculator.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.2/29

Example: (transcript of a session with scalarun, the Scala
Interpreter)

/home/odersky/tmp> scalarun

> def ged (a:int, b:int): int = if (b == 0) a else gcd (b, a % b)
'def ged’

> ged (8, 10)

2

> val x = gcd (15, 70)

val x:int=5

> val y = gcd(x, x)

valy:int=5

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.3/29

Why Study Functional Programming?

1 FP Is programming In its simplest form = easier to
understand thoroughly than more complex variants.

[]

FP has powerful composition constructs.

[]

In FP, only the value of an expression matters since side
effects are impossible. (this property is called referential
transparency).

[J Referential transparency gives a rich set of laws to
transform programs.

(1 FP has a well-established theoretical basis in Lambda
Calculus and Denotational Semantics.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.4/29

Sguare Roots by Newton’s Method

Compute the square root of a given number x as a limit of the
sequence y; given by:

yo = 1
Yit1 = (¥ +x/y;)/2

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.5/29

The i — i + 1 step Is encoded in the function improve:

> def improve (guess: double, x: double) = (guess + x / guess) / 2
def improve : (guess : double,x : double)double

>valy0=1.0

val yO : double = 1.0

> val y1 = improve (y0, 2.0)

val y1 : double = 1.5

> val y2 = improve (y1, 2.0)

val y2 : double = 1.4166666666666665

> val y3 = improve (y2, 2.0)

val y3 : double = 1.4142156862745097

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.6/29

We have to stop the iteration when the result is good enough:

> def abs(x: double): double = if (x > 0) x else —x

def abs : (x : double)double

> def goodEnough (guess: double, x: double): boolean =
| abs((guess * guess) — x) < 0.001

def goodEnough : (guess : double,x : double)boolean

> def sqrtiter(guess: double, x : double): double =

| if (goodEnough(guess, x)) guess else sqrtiter (improve(guess, x), x)
def sqrtlter : (guess : double,x : double)double

> def sqrt(x: double): double = sqrtlter(1.0, x)

def sqrt : (x : double)double

> sqrt (2.0)

1.4142156862745097

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.7/29

Language Elements Seen So Far

[1 Function Definitions:

def Ident Parameters |’ ResultType| "=" Expression

[1 Value definitions:

val ldent "=" Expression

[Function application: Ident'(* Expry, ..., Expra ‘)’
[0 Numbers, operators: as in Java

[If-then-else: as in Java, but as an expression.
[J Types: as in Java.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.8/29

Nested Functions

If functions are used only internally by some other function we
can avoid “name-space pollution” by nesting. E.qQ:

def sqrt (x : double) = {
def improve (guess: double, x: double) = (guess + x / guess) / 2;
def goodEnough (guess: double, x: double) =
abs ((guess * guess) — x) < 0.001;
def sqrtlter (guess: double, x: double): double =
if (goodEnough (guess, x)) guess
else sqrtlter (improve (guess, x), X);
sqrtlter (1.0, x)

}
The visibility of an identifier extends from its own definition to the

end of the enclosing block, including any nested definitions.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.9/29

Exercise:

[0 The goodEnough function tests the absolute difference
between the input parameter and the square of the guess.

[J This is not very accurate for square roots of very small

numbers and might lead to divergence for very large
numbers (why?).

[1 Design a different sqgrtlter function which stops if the change

from one Iiteration to the next is a small fraction of the
guess. E.g.

abs((x;11 — x;)/x;) < 0.001

Complete:

def sqrtlter(guess: double, x: double): double = ?

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.10/29

Semantics of Function Application

[0 One simple rule: A function application f (A) is evaluated by

e replacing the application with the function’s body where
e actual parameters A replace formal parameters of f.

[J This can be formalised as a rewriting of the program itself:
deff(x)=B;..f(A) — deff(x)=B;..|AX|B

[Here, |A/x] B stands for B with all occurrences of x replaced
by A.

[|A/x] B is called a substitution.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.11/29

Rewriting Example:

Consider gcd:
def gcd(a:int, b:int) =if (b ==0) aelse gcd (b, a % b)

Then gcd (14, 21) evaluates as follows:

ged (14, 21)

if (21 ==0) 14 else gcd (21, 14 % 21)

gcd (21, 14)

if (14 ==0) 21 else gcd (14, 21 % 14)
— gcd (14, 7)

if (7==0) 14 elseged (7,14 % 7)
— gcd (7, 0)

if (0==0) 7elseged (0,7 % 0)

7

L A A

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.12/29

Another rewriting example:

Consider factorial:

def factorial (n: int): int = if (n == 0) 1 else n * factorial (n — 1)

Then factorial(5) rewrites as follows:

factorial (5)

if (5==0) 1else 5 x* factorial (5 — 1)
5 x factorial (5 — 1)

5 x factorial (4)

5 * (4 * factorial (3))

(3 * (2 * factorial (1))))
% (3 % (2 % (1 * factorial (0))))
* (3% (2% (1%1))))

[A A A A

[

120

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.13/29

Question:

What differences are there between the two rewrite sequences?

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.14/29

Tall Recursion

1 Implementation note: If a function calls itself as its last
action, the function’s stack frame can be re-used. This Is

called “tail recursion”.
[J = Tall-recursive functions are iterative processes.

[1 More generally, if the last action of a function is a call to
another (possible the same) function, only a single stack
frame Is needed for both functions. Such calls are called

“tail calls”.

Exercise: Design a tail-recursive version of factorial.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.15/29

First-Class Functions

Most functional languages treat functions as “first-class
values”.

That Is, like any other value, a function may be passed as a
parameter or returned as a result.

This provides a flexible mechanism for program
composition.

Functions which take other functions as parameters or
return them as results are called “higher-order” functions..

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.16/29

Example

[1 Sum integers between a and b:

def sumints (a: int, b: int): double =
if (a > b) 0.0 else a+ sumints (a + 1, b);

[0 Sum cubes of all integers between a and b:

def cube (a:int) =a* a * a;
def sumCubes (a: int, b: int): double =
if (a > b) 0.0 else cube (a) + sumCubes (a + 1, b);

[J Sum reciprocals between a and b

def sumReciprocals (a: int, b: int): double =
if (a>b) 0else 1.0/ a + sumReciprocals (a + 1, b);

(1 These are all special cases of ZZ f(n) for different values of

f.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.17/29

Summation with a higher-order function

[1 Can we factor out the common pattern?

1 Define:

def sum(f: int = double, a: int, b: int): double =
if (a>b) 0.0else f(a) + sum(f,a+ 1, b);

[1 Then we can write:
def sumints(a: int, b: int) = sum(id, a, b);

def sumCubes(a: int, b: int) = sum(cube, a, b);
def sumReciprocals(a: int, b: int) = sum(reciprocal, a, b);

where
def id(x: int) = x;
def cube(x: int) = x * X * X;
def reciprocal(x: int) = 1.0/ x;

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.18/29

Anonymous functions

[1 Parameterisation by functions tends to create many small
functions.

[1 Sometimes it iIs cumbersome to have to define the functions
using def.

(1 A shorter notation makes use of anonymous functions,
defined as follows:
(x1:Tq, ..., X : T,,) = E defines a function which maps its
parameters xq, ..., X,, to the result of the expression E
(where E may refer to xq, ..., X,,).

[J The parameter types T; may be omitted if they can be
reconstructed “from the context”.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.19/29

[J Anonymous functions are not essential in Scala; an
anonymous function (xi, ..., X,) = E can always be
expressed using a def as follows:

{ def f(x;: Ty, s X : Ty) =E; f }

where f Is fresh name which I1s used nowhere else In the
program.

[1 We also say, anonymous functions are “syntactic sugar”.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.20/29

Summation with Anonymous Functions

Now we can write shorter:

def sumints(a: int, b: int) = sum((x = x), a, b);
def sumCubes(a: int, b: int) = sum((x = x * x * x), a, b);
def sumReciprocals(a: int, b: int) = sum((x = 1.0/x), a, b);
Can we do even better?
Hint: a, b appears everywhere and does not seem to take part in

Interesting combinations. Can we get rid of it?

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.21/29

Currying

Let's rewrite sum as follows.

def sum(f: int = double) = {
def sumFun (a:int, b: int): double =
if (a>b) 0.0
else f(a) + sumFun(a + 1, b);
sumFun

}

[1 sum I1s now a function which returns another function:

[1 Namely, the specialized summing function which applies the
f function and sums up the results.

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.22/29

Then we can define:

val sumints = sum (x = x);
val sumCubes = sum (x = X * X * X);
val sumReciprocals = sum (x = 1.0/ x);

Function values can be applied like other functions:

sumReciprocals (1, 1000)

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.23/29

Curried Application

How are function-returning functions applied?
Example:

> sum (cube) (1, 10)
3025

[J sum (cube) applies sum to cube and returns the

“cube-summing function” (Hence, sum (cube) is equivalent
to sumCubes).

[This function is then applied to the pair (1, 10).
[1 Hence, function application associates to the left:

sum (cube) (1,10) == (sum (cube)) (1, 10)
== val sc = sum (cube) ; sc (1, 10)

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.24/29

Curried Definition

[1 The style of function-returning functions is so useful in FP,
that we have special syntax for it.

[J For instance, the next definition of sum is equivalent to the
previous one, but shorter:

def sum (f: (int, int) = double) (a; int, b: int): double = {
if (a>Db) 0.0
else f(a) + sum(f)(a+ 1, b)

}

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.25/29

Generally, a curried function definition

def f (argsy) ... (args,) =E
where n > 1 expands to

def f (argsy) ... (args,,_1) = (defg (args,) =E; g)
where g Is a fresh identifier. Or, shorter:

def f (argsy) ... (args,,_1) = (args,) = E
Performing this step n times yields that

def f (argsy) ... (args,_1) (args,) =E
IS equivalent to

def f = (args;) = (argss) = ... (args,) = E

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.26/29

[1 Agalin, parentheses around single-name formal parameters
may be dropped.

(1 This style of function definition and application is called
currying after its promoter, Haskell B. Curry.

(1 Actually, the idea goes back further to Frege and
Schonfinkel, but the name “curried” caught on (maybe
because “schonfinkeled” does not sound so well.)

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.27/29

Exercises:

1. The sum function uses a linear recursion. Can you write a
tail-recursive one by filling in the ??’s?

def sum f (a:int, b: int): double = {
def iter (a: int, result: double): double = {

it (22) 22

else iter (??, ??)

}

iter (22, ??)

}

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.28/29

2. Write a function product that computes the product of the
values of functions at points over a given range.

3. Write factorial in terms of product.

4. Can you write an even more general function which
generalizes both sum and product?

Concurrency: Languages, Programming and Theory — Functional Programming and Lambda Calculus — Session 1 — Oct 22, 2003 — (produced on March 4, 2004) — p.29/29

	Part I: Functional Programming
	
	Why Study Functional Programming?
	Square Roots by Newton's Method
	
	
	Language Elements Seen So Far
	Nested Functions
	Exercise:
	Semantics of Function Application
	Rewriting Example:
	Another rewriting example:
	Question:
	Tail Recursion
	First-Class Functions
	Example
	Summation with a higher-order function
	Anonymous functions
	
	Summation with Anonymous Functions
	Currying
	
	Curried Application
	Curried Definition
	
	
	Exercises:
	

