Concurrency: Languages, Programming and Theory
 - Functional Programming and Lambda Calculus -
 Session 1 - Oct 22, 2003
 Martin Odersky
 EPFL-LAMP

Part I: Functional Programming

\square A pure functional program consists of data, functions, and an expression which describes a result.
\square Missing: variables, assignment, side-effects.
\square A processor of a functional program is essentially a calculator.

Example: (transcript of a session with scalarun, the Scala interpreter)
/home/odersky/tmp> scalarun
$>$ def $\operatorname{gcd}(a:$ int, $b:$ int $):$ int $=$ if $(b==0)$ a else $\operatorname{gcd}(b, a \% b)$ 'def gcd'
$>\operatorname{gcd}(8,10)$
2
$>$ val $x=\operatorname{gcd}(15,70)$
val x : int $=5$
$>$ val $y=\operatorname{gcd}(x, x)$
val y : int $=5$

Why Study Functional Programming?

\square FP is programming in its simplest form \Rightarrow easier to understand thoroughly than more complex variants.
\square FP has powerful composition constructs.
\square In FP, only the value of an expression matters since side effects are impossible. (this property is called referential transparency).
\square Referential transparency gives a rich set of laws to transform programs.
\square FP has a well-established theoretical basis in Lambda Calculus and Denotational Semantics.

Square Roots by Newton's Method

Compute the square root of a given number x as a limit of the sequence y_{i} given by:

$$
\begin{aligned}
& y_{0}=1 \\
& y_{i+1}=\left(y_{i}+x / y_{i}\right) / 2
\end{aligned}
$$

The $i \rightarrow i+1$ step is encoded in the function improve:
$>$ def improve (guess: double, x : double) $=($ guess $+x /$ guess $) / 2$ def improve: (guess : double, x: double)double
$>$ val y0 $=1.0$
val y0 : double = 1.0
$>$ val y1 = improve (y0, 2.0)
val y1 : double = 1.5
$>$ val $y 2$ = improve $(y 1,2.0)$
val y2 : double $=1.4166666666666665$
$>$ val $y 3$ = improve $(y 2,2.0)$
val y3 : double $=1.4142156862745097$

We have to stop the iteration when the result is good enough:

$>$ def abs $(x$: double $)$: double $=$ if $(x \geq 0) x$ else $-x$
def abs: (x : double) double
$>$ def goodEnough (guess: double, x : double): boolean =
| abs $(($ guess $*$ guess $)-x)<0.001$
def goodEnough : (guess : double, x : double)boolean
$>$ def sqrtlter(guess: double, x : double): double =
| if (goodEnough(guess, x)) guess else sqrtler (improve(guess, x), x)
def sqrtlter: (guess : double, x : double) double
$>$ def sqrt(x : double): double $=\operatorname{sqrtlter}(1.0, x)$
def sqrt: (x : double) double
$>$ sqrt (2.0)
1.4142156862745097

Language Elements Seen So Far

\square Function Definitions: def Ident Parameters [:'ResultType] "=" Expression
\square Value definitions:
val Ident "=" Expression
\square Function application: Ident'('Expr ${ }_{1}, \ldots$, Expr $_{2}$ ')'
\square Numbers, operators: as in Java
\square If-then-else: as in Java, but as an expression.
\square Types: as in Java.

Nested Functions

If functions are used only internally by some other function we can avoid "name-space pollution" by nesting. E.g:

```
def sqrt (x : double) ={
    def improve (guess: double, x: double) = (guess + x/guess) / 2;
    def goodEnough (guess: double, x: double) =
        abs ((guess * guess) - x)<0.001;
    def sqrtler (guess: double, x: double): double =
        if (goodEnough (guess, x)) guess
        else sqrtler (improve (guess, x), x);
    sqrtlter (1.0, x)
}
```

The visibility of an identifier extends from its own definition to the end of the enclosing block, including any nested definitions.

Exercise:

\square The goodEnough function tests the absolute difference between the input parameter and the square of the guess.
\square This is not very accurate for square roots of very small numbers and might lead to divergence for very large numbers (why?).
\square Design a different sqrtler function which stops if the change from one iteration to the next is a small fraction of the guess. E.g.

$$
\operatorname{abs}\left(\left(x_{i+1}-x_{i}\right) / x_{i}\right)<0.001
$$

Complete:

> def sqrtlter(guess: double, x: double): double = ?

Semantics of Function Application

\square One simple rule: A function application $f(A)$ is evaluated by

- replacing the application with the function's body where
- actual parameters A replace formal parameters of f.
\square This can be formalised as a rewriting of the program itself:

$$
\operatorname{def} f(x)=B ; \ldots f(A) \rightarrow \operatorname{def} f(x)=B ; \ldots[A / x] B
$$

\square Here, $[A / x] B$ stands for B with all occurrences of x replaced by A.
$\square[A / x] B$ is called a substitution.

Rewriting Example:

Consider gcd:

 def $\operatorname{gcd}(a:$ int, $b:$ int $)=$ if $(b==0)$ a else $\operatorname{gcd}(b, a \% b)$Then $\operatorname{gcd}(14,21)$ evaluates as follows:

```
                gcd (14, 21)
lif}(21==0)14 else gcd (21, 14% 21)
-> gcd (21, 14)
lif(14==0)21 else gcd (14, 21% 14)
-> gcd (14,7)
if}(7==0)14\mathrm{ else }\operatorname{gcd}(7,14%7
-> gcd (7,0)
if (0== 0) 7 else gcd (0,7% 0)
-> 7
```


Another rewriting example:

Consider factorial:

def factorial $(n$: int $)$: int $=$ if $(n=0) 1$ else $n *$ factorial $(n-1)$
Then factorial(5) rewrites as follows:

```
                factorial (5)
if (5==0)1 else 5* factorial (5-1)
```



```
5* factorial (4)
->..}->5*(4* factorial (3)
->..
->..->5*(4* (3*(2* factorial (1))))
->..
->..->5*(4*(3*(2*(1*1))))
->\ldots-> 120
```


Question:

What differences are there between the two rewrite sequences?

Tail Recursion

\square Implementation note: If a function calls itself as its last action, the function's stack frame can be re-used. This is called "tail recursion".
$\square \Rightarrow$ Tail-recursive functions are iterative processes.
\square More generally, if the last action of a function is a call to another (possible the same) function, only a single stack frame is needed for both functions. Such calls are called "tail calls".

Exercise: Design a tail-recursive version of factorial.

First-Class Functions

\square Most functional languages treat functions as "first-class values".
\square That is, like any other value, a function may be passed as a parameter or returned as a result.
\square This provides a flexible mechanism for program composition.
\square Functions which take other functions as parameters or return them as results are called "higher-order" functions..

Example

\square Sum integers between a and b :
def sumInts (a : int, $b:$ int): double $=$

$$
\text { if }(a>b) 0.0 \text { else } a+\text { sumints }(a+1, b) ;
$$

\square Sum cubes of all integers between a and b :

$$
\begin{aligned}
& \text { def cube }(a: \text { int })=a * a * a \text {; } \\
& \text { def sumCubes }(a: \text { int, } b: \text { int }) \text { : double }= \\
& \text { if }(a>b) 0.0 \text { else cube }(a)+\text { sumCubes }(a+1, b) ;
\end{aligned}
$$

\square Sum reciprocals between a and b
def sumReciprocals (a : int, b: int): double = if $(a>b) 0$ else $1.0 / a+$ sumReciprocals $(a+1, b)$;
\square These are all special cases of $\sum_{a}^{b} f(n)$ for different values of f.

Summation with a higher-order function

\square Can we factor out the common pattern?
\square Define:
def sum $(f:$ int \Rightarrow double, a : int, $b:$ int $)$: double $=$ if $(a>b) 0.0$ else $f(a)+\operatorname{sum}(f, a+1, b)$;
\square Then we can write:

```
def sumInts \((a: i n t, b: i n t)=\operatorname{sum}(i d, a, b)\);
def \(\operatorname{sumCubes}(a\) : int, \(b\) : int \()=\operatorname{sum}(\) cube, \(a, b)\);
def sumReciprocals( \(a\) : int, \(b:\) int \()=\operatorname{sum}(\) reciprocal, \(a, b)\);
```

where
def id $(x$: int $)=x$;
def cube $(x$: int $)=x * x * x$;
def reciprocal $(x$: int $)=1.0 / x$;

Anonymous functions

\square Parameterisation by functions tends to create many small functions.
\square Sometimes it is cumbersome to have to define the functions using def.
\square A shorter notation makes use of anonymous functions, defined as follows: $\left(x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right) \Rightarrow E$ defines a function which maps its parameters x_{1}, \ldots, x_{n} to the result of the expression E (where E may refer to x_{1}, \ldots, x_{n}).
\square The parameter types T_{i} may be omitted if they can be reconstructed "from the context".
\square Anonymous functions are not essential in Scala; an anonymous function $\left(x_{1}, \ldots, x_{n}\right) \Rightarrow E$ can always be expressed using a def as follows:

$$
\left\{\operatorname{def} f\left(x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right)=E ; f\right\}
$$

where f is fresh name which is used nowhere else in the program.
\square We also say, anonymous functions are "syntactic sugar".

Summation with Anonymous Functions

Now we can write shorter:

```
def sumInts(a: int, b: int) = sum((x=> x), a, b);
def sumCubes(a: int, b: int) = sum((x=>x*x*x),a,b);
def sumReciprocals(a: int, b: int)=\operatorname{sum}((x=>1.0/x),a,b);
```

Can we do even better?
Hint: a, b appears everywhere and does not seem to take part in interesting combinations. Can we get rid of it?

Currying

Let's rewrite sum as follows.

```
def sum(f: int }=>\mathrm{ double ) ={
    def sumFun (a: int, b: int): double =
        if (a>b) 0.0
        else f(a)+\operatorname{sumFun}(a+1,b);
    sumFun
}
```

\square sum is now a function which returns another function;
\square Namely, the specialized summing function which applies the f function and sums up the results.

Then we can define:

$$
\begin{aligned}
& \text { val sumInts }=\operatorname{sum}(x \Rightarrow x) \\
& \text { val sumCubes }=\operatorname{sum}(x \Rightarrow x * x * x) \\
& \text { val sumReciprocals }=\operatorname{sum}(x \Rightarrow 1.0 / x)
\end{aligned}
$$

Function values can be applied like other functions:
sumReciprocals (1,1000)

Curried Application

How are function-returning functions applied?
Example:
$>\operatorname{sum}($ cube $)(1,10)$
3025
\square sum (cube) applies sum to cube and returns the "cube-summing function" (Hence, sum (cube) is equivalent to sumCubes).
\square This function is then applied to the pair (1, 10).
\square Hence, function application associates to the left:

$$
\begin{aligned}
\operatorname{sum}(\text { cube })(1,10) & = \\
= & (\operatorname{sum}(\text { cube }))(1,10) \\
& =\text { val sc=sum }(\text { cube }) ; \operatorname{sc}(1,10)
\end{aligned}
$$

Curried Definition

\square The style of function-returning functions is so useful in FP, that we have special syntax for it.
\square For instance, the next definition of sum is equivalent to the previous one, but shorter:

```
def sum \((f:(\) int, int \() \Rightarrow\) double \()(a ;\) int, b: int) : double \(=\{\)
    if \((a>b) 0.0\)
    else \(f(a)+\operatorname{sum}(f)(a+1, b)\)
\}
```

Generally, a curried function definition

$$
\operatorname{def} f\left(\operatorname{args}_{1}\right) \ldots\left(\operatorname{args}_{n}\right)=E
$$

where $n>1$ expands to

$$
\operatorname{def} f\left(\operatorname{args}_{1}\right) \ldots\left(\operatorname{args}_{n-1}\right)=\left(\operatorname{def} g\left(\operatorname{args}_{n}\right)=E ; g\right)
$$

where g is a fresh identifier. Or, shorter:

$$
\operatorname{def} f\left(\operatorname{args}_{1}\right) \ldots\left(\operatorname{args}_{n-1}\right)=\left(\operatorname{args}_{n}\right) \Rightarrow E
$$

Performing this step n times yields that

$$
\operatorname{def} f\left(\operatorname{args}_{1}\right) \ldots\left(\operatorname{args}_{n-1}\right)\left(\operatorname{args}_{n}\right)=E
$$

is equivalent to

$$
\operatorname{def} f=\left(\operatorname{args}_{1}\right) \Rightarrow\left(\operatorname{args}_{2}\right) \Rightarrow \ldots\left(\operatorname{args}_{n}\right) \Rightarrow E
$$

\square Again, parentheses around single-name formal parameters may be dropped.
\square This style of function definition and application is called currying after its promoter, Haskell B. Curry.
\square Actually, the idea goes back further to Frege and Schönfinkel, but the name "curried" caught on (maybe because "schönfinkeled" does not sound so well.)

Exercises:

1. The sum function uses a linear recursion. Can you write a tail-recursive one by filling in the ??'s?
```
def sum f(a: int, b: int): double ={
    def iter (a: int, result: double): double ={
        if (??) ??
        else iter (??, ??)
    }
    iter (??, ??)
}
```

2. Write a function product that computes the product of the values of functions at points over a given range.
3. Write factorial in terms of product.
4. Can you write an even more general function which generalizes both sum and product?
