
Concurrency: Languages,
Programming and Theory

– Functional Programming and
Lambda Calculus –

Session 1 – Oct 22, 2003

Martin Odersky

EPFL-LAMP

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.1/29

Part I: Functional Programming

� A pure functional program consists of data, functions, and
an expression which describes a result.

� Missing: variables, assignment, side-effects.

� A processor of a functional program is essentially a
calculator.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.2/29

Example: (transcript of a session with scalarun, the Scala
interpreter)

/home/odersky/tmp> scalarun

> def gcd (a : int, b : int): int = if (b == 0) a else gcd (b, a % b)
’def gcd’

> gcd (8, 10)
2

> val x = gcd (15, 70)
val x : int = 5

> val y = gcd(x, x)
val y : int = 5

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.3/29

Why Study Functional Programming?

� FP is programming in its simplest form ⇒ easier to
understand thoroughly than more complex variants.

� FP has powerful composition constructs.

� In FP, only the value of an expression matters since side
effects are impossible. (this property is called referential
transparency).

� Referential transparency gives a rich set of laws to
transform programs.

� FP has a well-established theoretical basis in Lambda
Calculus and Denotational Semantics.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.4/29

Square Roots by Newton’s Method

Compute the square root of a given number x as a limit of the
sequence yi given by:

y0 = 1

yi+1 = (yi + x/yi)/2

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.5/29

The i → i + 1 step is encoded in the function improve:

> def improve (guess : double, x : double) = (guess + x / guess) / 2

def improve : (guess : double,x : double)double

> val y0 = 1.0

val y0 : double = 1.0

> val y1 = improve (y0, 2.0)
val y1 : double = 1.5

> val y2 = improve (y1, 2.0)
val y2 : double = 1.4166666666666665

> val y3 = improve (y2, 2.0)
val y3 : double = 1.4142156862745097

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.6/29

We have to stop the iteration when the result is good enough:

> def abs(x : double): double = if (x ≥ 0) x else −x

def abs : (x : double)double

> def goodEnough (guess : double, x : double): boolean =

| abs((guess ∗ guess) − x) < 0.001

def goodEnough : (guess : double,x : double)boolean

> def sqrtIter(guess : double, x : double): double =

| if (goodEnough(guess, x)) guess else sqrtIter (improve(guess, x), x)
def sqrtIter : (guess : double,x : double)double

> def sqrt(x : double): double = sqrtIter(1.0, x)
def sqrt : (x : double)double

> sqrt (2.0)
1.4142156862745097

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.7/29

Language Elements Seen So Far

� Function Definitions:
def Ident Parameters [‘:’ ResultType] ”=” Expression

� Value definitions:

val Ident ”=” Expression

� Function application: Ident’(’ Expr1, ..., Expr2 ‘)’

� Numbers, operators: as in Java

� If-then-else: as in Java, but as an expression.

� Types: as in Java.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.8/29

Nested Functions

If functions are used only internally by some other function we
can avoid “name-space pollution” by nesting. E.g:

def sqrt (x : double) = {
def improve (guess: double, x: double) = (guess + x / guess) / 2;

def goodEnough (guess: double, x: double) =

abs ((guess ∗ guess) − x) < 0.001;

def sqrtIter (guess: double, x: double): double =

if (goodEnough (guess, x)) guess

else sqrtIter (improve (guess, x), x);

sqrtIter (1.0, x)
}

The visibility of an identifier extends from its own definition to the

end of the enclosing block, including any nested definitions.
Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.9/29

Exercise:

� The goodEnough function tests the absolute difference
between the input parameter and the square of the guess.

� This is not very accurate for square roots of very small
numbers and might lead to divergence for very large
numbers (why?).

� Design a different sqrtIter function which stops if the change
from one iteration to the next is a small fraction of the
guess. E.g.

abs((xi+1 − xi)/xi) < 0.001

Complete:

def sqrtIter(guess: double, x: double): double = ?

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.10/29

Semantics of Function Application

� One simple rule: A function application f (A) is evaluated by
• replacing the application with the function’s body where
• actual parameters A replace formal parameters of f.

� This can be formalised as a rewriting of the program itself:

def f (x) = B ; ... f (A) → def f (x) = B ; ... [A/x] B

� Here, [A/x] B stands for B with all occurrences of x replaced
by A.

� [A/x] B is called a substitution.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.11/29

Rewriting Example:

Consider gcd:

def gcd(a : int, b : int) = if (b == 0) a else gcd (b, a % b)

Then gcd (14, 21) evaluates as follows:

gcd (14, 21)
→ if (21 == 0) 14 else gcd (21, 14 % 21)
→ gcd (21, 14)
→ if (14 == 0) 21 else gcd (14, 21 % 14)
→→ gcd (14, 7)
→ if (7 == 0) 14 else gcd (7, 14 % 7)
→→ gcd (7, 0)
→ if (0 == 0) 7 else gcd (0, 7 % 0)
→ 7

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.12/29

Another rewriting example:

Consider factorial:

def factorial (n : int): int = if (n == 0) 1 else n ∗ factorial (n − 1)

Then factorial(5) rewrites as follows:

factorial (5)
→ if (5 == 0) 1 else 5 ∗ factorial (5 − 1)
→ 5 ∗ factorial (5 − 1)
→ 5 ∗ factorial (4)
→ ... → 5 ∗ (4 ∗ factorial (3))
→ ... → 5 ∗ (4 ∗ (3 ∗ factorial (2)))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ factorial (1))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ factorial (0))))
→ ... → 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ 1))))
→ ... → 120

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.13/29

Question:

What differences are there between the two rewrite sequences?

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.14/29

Tail Recursion

� Implementation note: If a function calls itself as its last
action, the function’s stack frame can be re-used. This is
called “tail recursion”.

� ⇒ Tail-recursive functions are iterative processes.

� More generally, if the last action of a function is a call to
another (possible the same) function, only a single stack
frame is needed for both functions. Such calls are called
“tail calls”.

Exercise: Design a tail-recursive version of factorial.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.15/29

First-Class Functions

� Most functional languages treat functions as “first-class
values”.

� That is, like any other value, a function may be passed as a
parameter or returned as a result.

� This provides a flexible mechanism for program
composition.

� Functions which take other functions as parameters or
return them as results are called “higher-order” functions..

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.16/29

Example

� Sum integers between a and b:

def sumInts (a : int, b : int): double =

if (a > b) 0.0 else a + sumInts (a + 1, b);

� Sum cubes of all integers between a and b:

def cube (a : int) = a ∗ a ∗ a;

def sumCubes (a : int, b : int): double =

if (a > b) 0.0 else cube (a) + sumCubes (a + 1, b);

� Sum reciprocals between a and b

def sumReciprocals (a : int, b : int): double =

if (a > b) 0 else 1.0 / a + sumReciprocals (a + 1, b);

� These are all special cases of
∑b

a
f(n) for different values of

f .
Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.17/29

Summation with a higher-order function

� Can we factor out the common pattern?

� Define:

def sum(f : int ⇒ double, a : int, b : int): double =

if (a > b) 0.0 else f(a) + sum(f, a + 1, b);

� Then we can write:

def sumInts(a : int, b : int) = sum(id, a, b);

def sumCubes(a : int, b : int) = sum(cube, a, b);

def sumReciprocals(a : int, b : int) = sum(reciprocal, a, b);

where
def id(x : int) = x;

def cube(x : int) = x ∗ x ∗ x;

def reciprocal(x : int) = 1.0 / x;

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.18/29

Anonymous functions

� Parameterisation by functions tends to create many small
functions.

� Sometimes it is cumbersome to have to define the functions
using def.

� A shorter notation makes use of anonymous functions,
defined as follows:
(x1 : T1, ..., xn : Tn) ⇒ E defines a function which maps its
parameters x1, ..., xn to the result of the expression E
(where E may refer to x1, ..., xn).

� The parameter types Ti may be omitted if they can be
reconstructed “from the context”.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.19/29

� Anonymous functions are not essential in Scala; an
anonymous function (x1, ..., xn) ⇒ E can always be
expressed using a def as follows:

{ def f(x1 : T1, ..., xn : Tn) = E ; f }

where f is fresh name which is used nowhere else in the
program.

� We also say, anonymous functions are “syntactic sugar”.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.20/29

Summation with Anonymous Functions

Now we can write shorter:

def sumInts(a : int, b : int) = sum((x ⇒ x), a, b);

def sumCubes(a : int, b : int) = sum((x ⇒ x ∗ x ∗ x), a, b);

def sumReciprocals(a : int, b : int) = sum((x ⇒ 1.0 / x), a, b);

Can we do even better?

Hint: a, b appears everywhere and does not seem to take part in

interesting combinations. Can we get rid of it?

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.21/29

Currying

Let’s rewrite sum as follows.

def sum(f : int ⇒ double) = {
def sumFun (a : int, b : int): double =

if (a > b) 0.0

else f(a) + sumFun(a + 1, b);

sumFun

}

� sum is now a function which returns another function;

� Namely, the specialized summing function which applies the
f function and sums up the results.

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.22/29

Then we can define:

val sumInts = sum (x ⇒ x);

val sumCubes = sum (x ⇒ x ∗ x ∗ x);

val sumReciprocals = sum (x ⇒ 1.0 / x);

Function values can be applied like other functions:

sumReciprocals (1, 1000)

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.23/29

Curried Application

How are function-returning functions applied?
Example:

> sum (cube) (1, 10)
3025

� sum (cube) applies sum to cube and returns the
“cube-summing function” (Hence, sum (cube) is equivalent
to sumCubes).

� This function is then applied to the pair (1, 10).

� Hence, function application associates to the left:

sum (cube) (1, 10) == (sum (cube)) (1, 10)
== val sc = sum (cube) ; sc (1, 10)

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.24/29

Curried Definition

� The style of function-returning functions is so useful in FP,
that we have special syntax for it.

� For instance, the next definition of sum is equivalent to the
previous one, but shorter:

def sum (f : (int, int) ⇒ double) (a; int, b : int): double = {
if (a > b) 0.0

else f(a) + sum(f)(a + 1, b)
}

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.25/29

Generally, a curried function definition

def f (args1) ... (argsn) = E

where n > 1 expands to

def f (args1) ... (argsn−1) = (def g (argsn) = E ; g)

where g is a fresh identifier. Or, shorter:

def f (args1) ... (argsn−1) = (argsn) ⇒ E

Performing this step n times yields that

def f (args1) ... (argsn−1) (argsn) = E

is equivalent to

def f = (args1) ⇒ (args2) ⇒ ... (argsn) ⇒ E

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.26/29

� Again, parentheses around single-name formal parameters
may be dropped.

� This style of function definition and application is called
currying after its promoter, Haskell B. Curry.

� Actually, the idea goes back further to Frege and
Schönfinkel, but the name “curried” caught on (maybe
because “schönfinkeled” does not sound so well.)

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.27/29

Exercises:

1. The sum function uses a linear recursion. Can you write a
tail-recursive one by filling in the ??’s?

def sum f (a : int, b : int): double = {
def iter (a : int, result : double): double = {

if (??) ??

else iter (??, ??)
}
iter (??, ??)

}

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.28/29

2. Write a function product that computes the product of the
values of functions at points over a given range.

3. Write factorial in terms of product.

4. Can you write an even more general function which
generalizes both sum and product?

Concurrency: Languages, Programming and Theory – Functional Programming and Lambda Calculus – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.29/29

	Part I: Functional Programming
	
	Why Study Functional Programming?
	Square Roots by Newton's Method
	
	
	Language Elements Seen So Far
	Nested Functions
	Exercise:
	Semantics of Function Application
	Rewriting Example:
	Another rewriting example:
	Question:
	Tail Recursion
	First-Class Functions
	Example
	Summation with a higher-order function
	Anonymous functions
	
	Summation with Anonymous Functions
	Currying
	
	Curried Application
	Curried Definition
	
	
	Exercises:
	

