
Concurrency: Languages,
Programming and Theory

– Introduction –

Session 1 – Oct 22, 2003

Uwe Nestmann, Martin Odersky

EPFL-LAMP

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.1/14



Why Concurrency Matters

� Between June 1985 and January 27, a computerized
radiation therapy machine called Therac-25 caused 6
known accidents of massive radiation overdoses.

� Concurrent programming errors played an important role in
these accidents.

� “Race conditions” between different concurrent activities in
the control program resulted in bad control outputs.

� Because problems occured only sporadically, they took a
long time to be detected and fixed.

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.2/14



Why Concurrent Programming is Hard

What makes concurrent programming harder than sequential
one?

� A very large number of possible execution histories,
depending on the order in which instructions of individual
processes (or: threads) are processed.

� Hence, concurrent programs are hard to write and verify.

� They are almost impossible to “debug”, at least with
standard techniques.

� Necessary: Some theory. This includes
• Understanding formally the meaning of a program.
• Being able to reason whether two programs are

equivalent, or whether an implementation meets a
specification.

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.3/14



What this Course is about

� concurrency
• “things” running in parallel, or on distributed locations
• synchronization through communication
• mobility (of code and computation, not of devices)

� theory
• a simple calculus of concurrent systems: CCS
• a calculus of dynamic and mobile concurrent systems: π

• equivalences and congruences
• formal analysis and proof techniques

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.4/14



� languages
• formal syntax
• formal, operational semantics (describing the execution

of programs)
• (informal) type systems
• 3 mini-languages (calculi): λ, CCS, π

� programming
• concurrent programs that implement CCS and π-calculus

specifications.
• relationship with concurrent programming in Java.

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.5/14



Objectives (I)

� Why communicating/mobile systems ?
• increasing number of existing systems
• tend to be complex
• tend to be error-prone
• . . .

� Why calculi ?

• compositional : break big things into several small things

• algebraic: ease mechanical verification
• syntactic: provide basis for programming languages

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.6/14



Objectives (II)

Course preparing for research on:

� conception and implementation of verification tools

� conception of “high-level” languages, API’s or design
patterns for
• mobile/distributed systems

� modeling and analyzing systems of this kind

� meta-theoretical problems of the base calculi

� . . .

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.7/14



Objectives (III)

After the course, participants should be able to :

� easily read syntax & operational semantics

� compare/evaluate languages based on their semantics

� write specifications and implementations of concurrent
programs

� reason formally about (toy) examples

� “play” with concurrent languages
• write your own formal semantics for a given language
• argue for it! (i.e., analyze its properties)

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.8/14



Course Material & Support

� a web site
http://lamp.epfl.ch/teaching

� a newsgroup
news://news.epfl.ch/epfl.ic.cours.clpt

� an introductory book (by R. Milner)
communicating and mobile systems: the pi-calculus
• 3 copies in the IN-library
• 3 copies in the LAMP-library

� an advanced book (by D. Sangiorgi, D. Walker)
The pi-Calculus: A Theory of Mobile Processes

� slides

� papers

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.9/14



Course Overview

1 — October 22, 2003: Introduction, Functional Programming

2 — October 29, 2003: Foundations of Sequential Programming: The Lambda Calculus

3 — November 5, 2003: Encoding Functional Programs in Lambda

4 — November 12, 2003: A Calculus for Concurrent Processes (CCS)

5 — November 19, 2003: CCS for Programming

6 — November 26, 2003: π-Calculus Basics

7 — December 3, 2003: π-Calculus for Programming

8 — December 10, 2003: Higher-Level Concurrent Programming Idioms

9 — December 17, 2003: Exercises or Presentations

10 — January 7, 2004: Equivalences and Congruences of Programs

11 — January 14, 2004: Bisimulation in CCS

12 — January 21, 2004: CCS Verification with the Concurrency Workbench

13 — January 28, 2004: Bisimulation in π

14 — February 4, 2004: π-Calculus Verification

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.10/14



Course Organization

� Three streams:
1. Concurrency theory
2. Foundations of programming languages
3. Concurrent programming

� (1) and (2) will be done “ex-cathedra” in class.

� (3) will be done through programming exercises.

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.11/14



Tool Support

� verification tools
• concurrency workbench (CWB)
• mobility workbench (MWB)
• another bisimulation checker (ABC)

� calculus-based programming
• in Scala, using CCS and π-Calculus API’s

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.12/14



Credits

� oral exam + bonus (during the semester)

� bonus option 1: presentation
• of a paper
• of some selected material from one of the books

� bonus option 2: miniproject
• modeling and analysis for a chosen problem
• meta-theoretical proofwork

� bonus option 3: Xmas exam

� availability of the options will depend on number of
participants

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.13/14



Communication and Feedback

� Uwe.Nestmann@epfl.ch

Martin.Odersky@epfl.ch

Vincent.Cremet@epfl.ch

Sebastien.Briais@epfl.ch

� news://news.epfl.ch/epfl.ic.cours.clpt

� INR 317, 318, 319, 329

Concurrency: Languages, Programming and Theory – Introduction – Session 1 – Oct 22, 2003 – (produced on March 4, 2004) – p.14/14


	Why Concurrency Matters
	Why Concurrent Programming is Hard
	What this Course is about
	
	Objectives (I)
	Objectives (II)
	Objectives (III)
	Course Material & Support
	Course Overview
	Course Organization
	Tool Support
	Credits
	Communication and Feedback

