
Concurrency: Theory, Languages and
Programming

– From Pi to Java and Back –

Session 8 – Dec 11th, 2002

Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.1/33



From Pi to Java and Back

�

CCS and� -Calculus are established formalisms for the
specification and study of concurrent systems.

�

When it comes to programming, most concurrent systems
are written using a thread library with semaphores,
monitors, etc.

�

What is the relationship between the two idioms?

�

We will answer that by

� encoding imperative synchronization constructs in

� -calculus

� implementing� -calculus using traditional threads (that’s
what pilib does).

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.2/33



From Java to Pi

What follows are encodings of

�

Semaphores

�

Monitors

�

Readers/writers locks as used in databases

in�� calculus.

To keep the presentation simpler, we actually use pilib instead of

� -calculus as target language.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.3/33



Preliminaries: Signals

�

All communication in pilib works over channels.

�

An action without parameters as in CCS is modeled as a
channel over which unit values ( ) are sent.

�

This can be expressed more directly by a Signal, defined as
follows.

class Signal extends Chan [Unit ] with

�

def send = write ( ( ) );

def receive = read;

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.4/33



Semaphores

�

A semaphore implements two operations, get and release.

�

“Critical regions” of processes are enclosed in calls to first
get, then release of a semaphore.

�

Between those two calls, a process is said to own a
semaphore.

�

The semaphore implementation ensures that at most one
thread can own a semaphore at any given time.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.5/33



A Semaphore Implementation

Here is an implementation of a semaphore, which uses a signal
for synchronization.

class Semaphore with

�

private val busy = new Signal;

def get = busy.send;

def release = spawn

�

busy.receive

�

;

release

�

Usage:

val s = new Semaphore;

s.get; ...; s.release;

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.6/33



Another Semaphore Implementation

Here is another implementation, which implements the
synchronization policy in a recursive process.

class Semaphore with

�

private val busy = new Signal;

private val free = new Signal;

def get = busy.send;

def release = free.send;

def sema =

�

busy.receive; free.receive ; sema

�

spawn

�

sema

�
�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.7/33



Binary and Counting Semaphores

�

Question: In both semaphore implementations, what
happens if there is a release without preceding get?

val s = new Semaphore;

s.release; // ?

�

Two other possibilities:

� The release should be forgotten, i.e.
val s = new Semaphore;

s.release; s.get; s.get; // 2nd get blocks

� The release should enable another subsequent get. i.e.
val s = new Semaphore;

s.release; s.get; s,get // 2nd get continues

�

The first behavior is called a binary semaphore, the second
a counting semaphore.

Exercise: Implement binary and counting semaphores by mod-

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.8/33



Monitors

�

A monitor encapsulates one or more procedures that need
to be executed mutually exclusively.

�

Monitors also offer a way to wait for a certain condition or to
signal that a condition is established.

�

Mutual exclusion can be implemented by a semaphore.

�

However, waiting on conditions and mutual exclusion are
not independent, since a waiting process has to release the
monitor (to allow some other process to establish the
condition).

�

We now explain monitors in detail, using the Java
implementation as example.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.9/33



Monitors in Java

�

A monitor in Java is represented by the synchronized
language construct and the following three methods.
void notify ( ) Wakes up a single thread that is waiting on

this object’s monitor.
void notifyAll ( ) Wakes up all threads that are waiting on

this object’s monitor.
void wait ( ) Causes current thread to wait until another

thread invokes the notify ( ) method or the
notifyAll ( ) method for this object.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.10/33



�

The synchronized construct is written as follows:
synchronized (mobj )

�

block

�

where mobj is a monitor and block is a sequence of
statements that is executed under mutual exclusion.

�

Alternatively, synchronized can also used as a method
modifier; then the whole method body is treated as a
synchronized block.

�

Java treats every object as a potential monitor.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.11/33



Monitors in Scala

Monitors in Scala are almost the same as in Java. There are
only two differences.

1. Not every Scala object is a monitor. Monitor operations are
available on objects of classes which inherit from
scala.Monitor.

2. Instead of a synchronized language construct or modifier
there is a predefined method of the same name in class
Monitor.

class Monitor with

�

def synchronized [a ] (def b : ( )a ): a;

def notify ( ): Unit;

def notifyAll ( ): Unit;

def wait ( ): Unit;

def await (def cond : Boolean ): Unit

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.12/33



Usage Example

Here is an example how synchronized is used in Scala.

class Counter extends Monitor with

�

private var x = 0;

def increment ( ) = synchronized

�

x = x

�

1

�

def decrement ( ) = synchronized

�

x = x� 1

�

def value ( ) = x

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.13/33



Usage Example (2)

As an example that also uses conditions, here is a counter
which can never go negative.

class NonNegCounter extends Monitor with

�

private var x = 0;

def increment ( ) = synchronized

�

x = x

�

1;

if (x�� 1 ) notifyAll ( );

�

def decrement ( ) = synchronized

�

while (x�� 0 )

�

wait ( )

�

x = x� 1

�

def value ( ) = x

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.14/33



Question: Why use while instead of if as a guard for the wait?

�

In fact, the while� wait idiom is so common that it is
encapsulated in a separate method in class Monitor.

def await (def cond : Boolean ): Unit =

while (!cond ) wait ( )

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.15/33



�

With await, the counter example can be written more
concisely as follows.

class NonNegCounter extends Monitor with

�

private var x = 0;

def increment ( ) = synchronized

�

x = x

�

1;

if (x�� 1 ) notifyAll ( );

�

def decrement ( ) = synchronized

�

await (x != 0 );

x = x� 1

�

def value ( ) = x

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.16/33



Another Example: Bounded Buffer

Here is the implementation of a class for bounded buffers.

class Buffer [a ] (size : Int ) extends Monitor with

�

var in = 0, out = 0, n = 0;

val elems = new Array [a ] (size );

def put (x : a ) = synchronized

�

await (n

�

size );

elems (out ) = x;

out = (out

�

1 )

�

size;

if (n�� 0 ) notifyAll ( );

n = n

�

1;

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.17/33



def get : a = synchronized

�

await (n

�

0 );

val x = elems (in );

in = (in

�

1 )

�

size;

if (n�� size ) notifyAll ( );

n = n� 1;

x

�
�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.18/33



Coding Monitors in PiLib

�

We now show how monitors can be implemented in pilib.

�

In reality, it’s the other way round – pilib is implemented
using Java’s monitor concept.

�

But the present encoding is interesting since it gives a
alternative account of monitors as higher-level
synchronization constructs.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.19/33



�

The encoding uses two internal data structures

� A lock to guarantee mutual exclusion

� A list of waiting processes to be re-executed on a notify
operation.

class JavaMonitor with

�

private val lock = new Semaphore;

private var waiting : List [Signal ] = [ ];

The synchronized implementation is straightforward:

def synchronized [a ] (def s : a ): a =

�

lock.get; val result = s; lock.release; result

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.20/33



The Wait operation releases the monitor lock and waits for a
private signal which is appended to the waiting list.

def Wait =

�

val s = new Signal;

waiting = waiting ::: [s ];

lock.release;

s.receive;

lock.get;

�

(to avoid a conflict with Java’s wait method, we have written Wait

in upper case.)

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.21/33



The Notify operation wakes up the first process on the waiting
list and removes the entry from the list.

def Notify =

if (!waiting.isEmpty )

�

waiting.head.send;

waiting = waiting.tail;

�

The NotifyAll operation does the same to all processes on the
list.

def NotifyAll =

while (!waiting.isEmpty )

�

waiting.head.send;

waiting = waiting.tail;

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.22/33



A Limitation

�

There is one aspect where the encoding of Java’s monitors
in pilib is not faithful.

�

In Java, a thread owning a monitor is allowed to enter
another synchronized block on the same monitor.

�

Question: Using the pilib implementation of monitors and
given the class:

class Counter2 extends Counter with

�

def updown ( ) = synchronized

�

increment ( ); decrement ( );

�
�

what is the effect of (new Counter2 ).updown ( )?

�

The Java behavior can be modeled in pilib only if one
introduces process identifiers (which changes the
signatures of operations).

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.23/33



Readers/Writers Locks

�

A more complex form of synchronization distinguishes
between readers which access a common resource without
modifying it and writers which can both access and modify
it.

�

To synchronize readers and writers we need to implement
operations startRead, startWrite, endRead, endWrite, such
that:

� there can be multiple concurrent readers, and

� there can only be one writer at one time.

� In addition it should be guaranteed that pending write
requests are not delayed indefinitely (provided the
process scheduler is fair).

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.24/33



Readers/Writers in -calculus

�

The idea is to model the operations by signals sr (start
read), er (end read), sw (start write) and ew (end write).

�

These signals are coordinated by process

�
� , where the

� subscript indicates the number of readers in the system.

������
������
	�
�

��
�
�����

�
�
�
�	�
�

�
���

���
�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.25/33



Readers/Writers in PiLib

We package the� -calculus program in a Scala class as follows.

class ReadWriteLock with

�

val sr = new Signal, er = new Signal, sw = new Signal, ew = new Signal;

def startRead = sr.send;

def startWrite = sw.send;

def endRead = er.send;

def endWrite = ew.send;

def RW (n : Int ): Unit =

if (n�� 0 )

choice

�

sr� (x

�

RW (1 ) )

�

sw� (x

�

ew.receive; RW (0 ) )

�

else
choice

�

sr� (x

�

RW (n

�

1 ) )

�

er� (x

�

RW (n� 1 ) )

�

spawn

�

RW (0 )

�

;

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.26/33



Question:

�

Assume that the system is very busy: At any one time there
are always processes that want to read and other
processes that want to write.

�

Assume that processes are scheduled randomly.

�

What is the probability that a reader or a writer will never get
the resource?

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.27/33



Avoiding Starvation

�

How can we avoid the potential starvation of writers?

�

An idea is to introduce another signal ww, which stands for
“want write’ ”.

�

A writer process will always execute ww, sw, and ew in that
order.

�

We then add queue process

�

, which sequentializes sr and
ww requests.

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.28/33



�

A system with a process

�

using a readers/writers lock is
then composed from

������
�

where

�

and

��

are given as follows.

��
����

�
�

�����
�
�
	�
�

��
�
����

�
�

�
�
�
�	�
�

�
���

���
�
�
����
���
�
����
�
���
�
��
�
�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.29/33



Readers/Writers Locks using Monitors

�

Here is an alternative implementation of a readers/writers
lock which uses a monitor.

�

There are two counter variables.

� One counts the number of active (i.e. reading or writing)
processes.

� The other counts the number of active or waiting writers.

class ReadWriteLock extends Monitor with

�

private var nactive : Int = 0;

private var nwriters : Int = 0;

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.30/33



A reader can start only if there are no writers active or waiting:

def startRead = synchronized

�

await (nwriters�� 0 );

nactive = nactive

�

1;

�

A writer can start only if there are no active processes:

def startWrite = synchronized

�

nwriters = nwriters

�

1;

await (nactive�� 0 );

nactive = 1;

�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.31/33



Operations endRead and endWrite decrement counters and
possibly notify waiting processes.

def endRead = synchronized

�

nactive = nactive� 1;

if (nactive�� 0 ) NotifyAll;

�

def endWrite = synchronized

�

nwriters = nwriters� 1;

nactive = 0;

NotifyAll;

�
�

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.32/33



Question:

�

Assume that the system is very busy: At any one time there
are always processes that want to read and other
processes that want to write.

�

Assume that processes are scheduled randomly.

�

What is the probability that a reader or a writer will never get
the resource?

�

Is this acceptable?

�

If not, how can it be fixed?

Concurrency: Theory, Languages and Programming – From Pi to Java and Back – Session 8 – Dec 11th, 2002 – (produced on March 4, 2004) – p.33/33


	From Pi to Java and Back
	From Java to Pi
	Preliminaries: Signals
	Semaphores
	A Semaphore Implementation
	Another Semaphore Implementation
	Binary and Counting Semaphores
	Monitors
	Monitors in Java
	
	Monitors in Scala
	Usage Example
	Usage Example (2)
	
	
	Another Example: Bounded Buffer
	
	Coding Monitors in PiLib
	
	
	
	A Limitation
	Readers/Writers Locks
	Readers/Writers in $pi $-calculus
	Readers/Writers in PiLib
	
	Avoiding Starvation
	
	Readers/Writers Locks using Monitors
	
	
	

