Concurrency: Theory, Languages and Programming – Pi Calculus Examples – Session 7 – December 4, 2002

Uwe Nestmann

EPFL-LAMP

Concurrency: Theory, Languages and Programming - Pi Calculus Examples - Session 7 - December 4, 2002 - (produced on March 4, 2004, 18:38) - p.1/

Replication via Recursion

In the presence of process identifiers, recursion means that a process identifier defined by

can be used in any process term by means of instantiation. Note that could also be used like this within itself ...

Using recursion, how can we model/simulate replication? Define a process identifier that, when triggered,

"behaves roughly like"

Recursion via Replication

Using replication, recursion can be modeled through:

- 1. invent name to stand for identifier
- 2. for any ,

let denote the result of replacing any call by -

3. replace by

Example:

Unbounded Buffers

where

Follow the sequence to convince yourself that the buffer process is indeed a buffer (FIFO) and that it can grow unboundedly.

Note the "type" of the stored values ...

Note the behavior of empty cells inside a buffer "chain".

Elastic Buffers

Make the buffer elastic, i.e., make empty cells disappear!

Several design decisions to be taken concern the question *when* an empty cell should cut itself out of a chain and die.

if empty cell is next to a full/empty cell?

if empty cell is left/right to a cell?

should it be *allowed* (suicide) or *forced* (murder) to die?

One goal of this exercise is to make you think about how to argue for or against that the various design decisions above lead to equivalent solutions.

Elastic Buffers: Setup

where

Elastic Buffers: cut-when-left

Elastic Buffers: cut-when-right