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Redexes


There are (at least) two reasons for studying LTSs
(as opposed to mere reductions as in the


�


-calculus):


�


the emphasis in on interaction with other programs


�


redexes


���


in a concurrent program are usually distributed
over terms, not juxtaposed as in


�


-calculus.


����
�	
����
��
����
����	�
��
	


��	 redexes are the “source” of reductions or internal
transitions, visible as the pattern in the conclusion of either
the


�


-rule (in


�


) or the COMM-rule (in [VP]CCS).
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Unbounded Structures: Stacks (I)


�


“specification”:
stored values are encoded in the index of the identifier


� needs an unbounded number of process identifiers . . .


� does not exploit “concurrency inside”


����
�


empty� push� pop


�
��	�


Stack
�
���	


Stack


��
� push


��	� Stack�
�


empty


��
� Stack


Stack��

�


��
� push


��	� Stack����

�
�


pop


��� Stack
�
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Unbounded Structures: Stacks (II)


�


“implementation”:
using a chain of individual cells for the stored values


�


cells can have one of the following states:


�� : nothing is left in the stack accessible through this cell


��� : a cell containing value
�� : nothing left in this particular cell,


but maybe beyond


�


on “the right of it” . . .
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Unbounded Structures: Stacks (III)


���� push� empty� pop� not� drop� pull


�����������������
�
�
�	


�����������	



not� drop� pull


������������	



push� empty� pop


�	
��� push


��	�
��
�


��	�


empty


��
�


�
�
��� push


��	�
��
�


��
�


	�


pop


���
�


��� pull


��	�
�
�


�


drop


�	
�


�
�

���
�
�


��������
��


�


Calculate the states for the transition sequence
push


�
�����


push


�
�����


pop


�
����� and “stabilize” the remainder.


�


Compare Stack
� and


�

� . . .
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Turing Power


A Turing-machine consists of:


�


a finite alphabet of symbols


�


an infinite tape


�


a finite control mechanism


�


movement or r/w-head to left or right


A Turing-machine can be nicely simulated with concurrent
processes by two stacks (the tape). Neither an infinite alphabet
nor infinite summation is necessary for this. [Milner 89]


1. The calculus of concurrent process expressions is
Turing-powerful.


2. The halting problem for some “Turing machine” TM can be
encoded as the existence of an infinite sequence TM��


�


.
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Unbounded Structures: Stacks (IV)


Some criticism:


��


’s cannot be reused for storing new values
(neither inner nor outer


�


’s!).


��


’s are never “used”, pile up and stay around.
(Note that, although


���


“=”


�


,
explicit garbage collection would be required.)
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Unbounded Structures: Stacks (V)


��� push


��	�
�
�


�


empty


��
�


�
�
��� push


��	�
��
�


��
�


	�


pop


���
��


not


���
�


��� pull


��	�
�
�


�


drop


�	
�


��


push


��	�
�
�


�

���
�
�


��������
��


�


What are the problems of this “implementation”?
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Expressiveness


Although Turing-powerful, concurrent process expressions are,
in some particular sense, not expressive enough:
it is not possible to cut out unusable (=dead) cells


�


.


If we had the possibility to dynamically change the
interconnection structure among process components,
then cells could drop out by connecting their left and right
neighbors together.


One way to do this is the
transmission of “channels over channels”.
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Name-Passing Syntax


negative actions��� : send name over name� .


positive actions���	 : receive any name, say , over name�


and “bind the result” to name� .


Binding results in substitution
of the formal parameter� by the actual parameter .


polyadic communication���� and����	 (


�� pairwise different)
transmit many values at a time.
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Syntax Conventions


names�
�


�
�
����������


actions�����
�
�
	�
��


�
�
��
��


�


finite sequences


�� . . .


�


All values/variables/channels are just names.
Parentheses usually indicate bindings.
Angled brackets are often omitted.


�


parametric processes with defining equations
are modeled via the more primitive notion
of replication and name-passing
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Pi Calculus


Definition: The set


�


of� -calculus proc. exp. is defined
(precisely) by the following syntax:


����
�
�


����
�


���	�����
����


�
���


��
�
�


We use


�
�


�
�


�� to stand for process expressions.


�����	� abbreviates


���	���	�
�
�������
	���


�� abbreviates���
������
����
�
�
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Mobility ? “Flowgraphs” !


���
�
�
�
�


��
�
��
�
�
	
�


��
���������


Assume that�
�������	 .


Depict the transition


���	����	�����
�����	�����
�
���	


as a flow graph (with scopes) and verify it using the reaction
and congruence rules.
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Example: Hand-Over Protocol


Car


�


talk� swch


	��
� talk� Car


�


talk� swch


�


Base�
��
� talk�� Base�� give�
���
�
�
�	
� swch�


���
�
�
��
� Idle�


Idle�
��
� alrt�
�	
� Base�


Ctre�
��
� give�
�


talk���� swch���
�
� alrt���


��
� Ctre���


Syst�
��
�
�����	 Car


�


talk�� swch�
��


Base�
�


Idle�
�


Ctre�
�


Exercise: Observe that Syst�
��
���


	�


Syst���
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Exercise: Overtaking Cars


A car


���
�


�
�


��


on a road is connected to its back and front
neighbor through


�


and


�


, respectively, while� just represents
its identifier.


The road is assumed to be infinite, so we ignore any boundary
problem, and it is static in the sense that no cars may enter or
leave the road.


Define


���
�


�
�


�	


such that a car may overtake another car.
Beware of deadlocks and nested overtake attempts. You are not
allowed to change the parameter� of instances of


�


.


Car


��
�


�
�


�	
��
�


Fast


��
�


�
�


�	
��
�


Slow


��
�


�
�


�
�


��	���
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LTS: Prefixes


actions�����
�
��


����
�
��


��
�
�


(TAU)��
�


�
���� (OUT)��


���
�


�
��
��


������


(INP)


���
����	�
�
�
�
����


�
�


�
��


�����������


(COMM)


�
��
��


������
��
�
�
�����


�
���


�
����


����
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LTS: Restriction


(RES)


�
�


����
�


���	�
�


���
���	��


��������	


(OPEN)


�
��

����
��


���������
�


���	�
��	
����
��


����������
�


����������
�


���


The label on transition


��

����
��


�������� is called bound output.
(Invariant:


���������
��


.)


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.17/26







LTS: Parallel Composition


(PAR)


�
�


����
�


���
�


����
���


������	�����	�
�


(CLOSE)


�
�
�
�����


��
��
	���
��


���������
�


���
�
���


����	������	
�����������	��
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LTS: Miscellaneous


(SUM)


�
�


����
�


���
�


����
�


(REP)


����
�


����
�


��
�


����
�


(ALP)


�
�


����
�


�
�


����
�


����
�


�
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Recursion


����	
��
�
�� , where


��
��
�������������������


can be used in:


�
��
��������������������


can be modeled through:


1. invent� to stand for


�


2. for any


�


,
let


��


denote the result of replacing any call


����� by������
�


3. replace


�


by


���	�
��������	�
���	
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Booleans


True


��	
��
��
��
�


�	
�


���


False


��	
��
��
��
�


�	
�


If


��
� foo� bar


	��
�
����	���
�


��
�


���


Check that for all


�
�


�


:


���	� True


����


If


��
� foo� bar


��


“=”


���	� False


����


If


��
� foo� bar


��


“=”
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Encoding Tuples


��
�
��
�
�
�


������
��
�
���	�
������


Think about:


�
�
�����
�
�


������������
	
�


�
��


�
�
�����
�
�


���������
	
�


���������
�
�


�
��


��
�
��
�
�
�


������
��
�
���	�
������
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Encoding Synchrony


���������
��
�
�������������


...


��
�
�
�
�
�


������
��
�
��	�
������
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Encoding Summation


�������
�
�
���


��
��	�
��
�
�


�������������
��


���
��
��	�
��
����
�


��
�
��	�
������
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Encoding Lambda-Calculus


�������	
��
��
���


��������	
��
�����
	
�


������
����	����	
��
�
��	�������


�
�


���	��
�
��


�
�


����	�
���������


Try to evaluate/encode


���������	��	���	
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“Final Words”


name-passing vs. value-pasing


�


better pragmatics


�


natural programming idioms


�


semantic foundations for all (?) major programming styles


�


. . .


�


security protocols via (s)pi-calculus
(� research at LAMP2 . . . )
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