

Concurrency:
Theory, Languages and Programming


– Pi Calculus –


Session 6 – November 27, 2002


Uwe Nestmann


EPFL-LAMP


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.1/26







Redexes


There are (at least) two reasons for studying LTSs
(as opposed to mere reductions as in the


�


-calculus):


�


the emphasis in on interaction with other programs


�


redexes


���


in a concurrent program are usually distributed
over terms, not juxtaposed as in


�


-calculus.


����
�	
����
��
����
����	�
��
	


��	 redexes are the “source” of reductions or internal
transitions, visible as the pattern in the conclusion of either
the


�


-rule (in


�


) or the COMM-rule (in [VP]CCS).


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.2/26







Unbounded Structures: Stacks (I)


�


“specification”:
stored values are encoded in the index of the identifier


� needs an unbounded number of process identifiers . . .


� does not exploit “concurrency inside”


����
�


empty� push� pop


�
��	�


Stack
�
���	


Stack


��
� push


��	� Stack�
�


empty


��
� Stack


Stack��

�


��
� push


��	� Stack����

�
�


pop


��� Stack
�


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.3/26







Unbounded Structures: Stacks (II)


�


“implementation”:
using a chain of individual cells for the stored values


�


cells can have one of the following states:


�� : nothing is left in the stack accessible through this cell


��� : a cell containing value
�� : nothing left in this particular cell,


but maybe beyond


�


on “the right of it” . . .


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.4/26







Unbounded Structures: Stacks (III)


���� push� empty� pop� not� drop� pull


�����������������
�
�
�	


�����������	



not� drop� pull


������������	



push� empty� pop


�	
��� push


��	�
��
�


��	�


empty


��
�


�
�
��� push


��	�
��
�


��
�


	�


pop


���
�


��� pull


��	�
�
�


�


drop


�	
�


�
�

���
�
�


��������
��


�


Calculate the states for the transition sequence
push


�
�����


push


�
�����


pop


�
����� and “stabilize” the remainder.


�


Compare Stack
� and


�

� . . .


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.5/26







Turing Power


A Turing-machine consists of:


�


a finite alphabet of symbols


�


an infinite tape


�


a finite control mechanism


�


movement or r/w-head to left or right


A Turing-machine can be nicely simulated with concurrent
processes by two stacks (the tape). Neither an infinite alphabet
nor infinite summation is necessary for this. [Milner 89]


1. The calculus of concurrent process expressions is
Turing-powerful.


2. The halting problem for some “Turing machine” TM can be
encoded as the existence of an infinite sequence TM��


�


.


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.6/26







Unbounded Structures: Stacks (IV)


Some criticism:


��


’s cannot be reused for storing new values
(neither inner nor outer


�


’s!).


��


’s are never “used”, pile up and stay around.
(Note that, although


���


“=”


�


,
explicit garbage collection would be required.)


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.7/26







Unbounded Structures: Stacks (V)


��� push


��	�
�
�


�


empty


��
�


�
�
��� push


��	�
��
�


��
�


	�


pop


���
��


not


���
�


��� pull


��	�
�
�


�


drop


�	
�


��


push


��	�
�
�


�

���
�
�


��������
��


�


What are the problems of this “implementation”?


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.8/26







Expressiveness


Although Turing-powerful, concurrent process expressions are,
in some particular sense, not expressive enough:
it is not possible to cut out unusable (=dead) cells


�


.


If we had the possibility to dynamically change the
interconnection structure among process components,
then cells could drop out by connecting their left and right
neighbors together.


One way to do this is the
transmission of “channels over channels”.


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.9/26







Name-Passing Syntax


negative actions��� : send name over name� .


positive actions���	 : receive any name, say , over name�


and “bind the result” to name� .


Binding results in substitution
of the formal parameter� by the actual parameter .


polyadic communication���� and����	 (


�� pairwise different)
transmit many values at a time.


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.10/26







Syntax Conventions


names�
�


�
�
����������


actions�����
�
�
	�
��


�
�
��
��


�


finite sequences


�� . . .


�


All values/variables/channels are just names.
Parentheses usually indicate bindings.
Angled brackets are often omitted.


�


parametric processes with defining equations
are modeled via the more primitive notion
of replication and name-passing


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.11/26







Pi Calculus


Definition: The set


�


of� -calculus proc. exp. is defined
(precisely) by the following syntax:


����
�
�


����
�


���	�����
����


�
���


��
�
�


We use


�
�


�
�


�� to stand for process expressions.


�����	� abbreviates


���	���	�
�
�������
	���


�� abbreviates���
������
����
�
�


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.12/26







Mobility ? “Flowgraphs” !


���
�
�
�
�


��
�
��
�
�
	
�


��
���������


Assume that�
�������	 .


Depict the transition


���	����	�����
�����	�����
�
���	


as a flow graph (with scopes) and verify it using the reaction
and congruence rules.


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.13/26







Example: Hand-Over Protocol


Car


�


talk� swch


	��
� talk� Car


�


talk� swch


�


Base�
��
� talk�� Base�� give�
���
�
�
�	
� swch�


���
�
�
��
� Idle�


Idle�
��
� alrt�
�	
� Base�


Ctre�
��
� give�
�


talk���� swch���
�
� alrt���


��
� Ctre���


Syst�
��
�
�����	 Car


�


talk�� swch�
��


Base�
�


Idle�
�


Ctre�
�


Exercise: Observe that Syst�
��
���


	�


Syst���


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.14/26







Exercise: Overtaking Cars


A car


���
�


�
�


��


on a road is connected to its back and front
neighbor through


�


and


�


, respectively, while� just represents
its identifier.


The road is assumed to be infinite, so we ignore any boundary
problem, and it is static in the sense that no cars may enter or
leave the road.


Define


���
�


�
�


�	


such that a car may overtake another car.
Beware of deadlocks and nested overtake attempts. You are not
allowed to change the parameter� of instances of


�


.


Car


��
�


�
�


�	
��
�


Fast


��
�


�
�


�	
��
�


Slow


��
�


�
�


�
�


��	���


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.15/26







LTS: Prefixes


actions�����
�
��


����
�
��


��
�
�


(TAU)��
�


�
���� (OUT)��


���
�


�
��
��


������


(INP)


���
����	�
�
�
�
����


�
�


�
��


�����������


(COMM)


�
��
��


������
��
�
�
�����


�
���


�
����


����


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.16/26







LTS: Restriction


(RES)


�
�


����
�


���	�
�


���
���	��


��������	


(OPEN)


�
��

����
��


���������
�


���	�
��	
����
��


����������
�


����������
�


���


The label on transition


��

����
��


�������� is called bound output.
(Invariant:


���������
��


.)


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.17/26







LTS: Parallel Composition


(PAR)


�
�


����
�


���
�


����
���


������	�����	�
�


(CLOSE)


�
�
�
�����


��
��
	���
��


���������
�


���
�
���


����	������	
�����������	��


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.18/26







LTS: Miscellaneous


(SUM)


�
�


����
�


���
�


����
�


(REP)


����
�


����
�


��
�


����
�


(ALP)


�
�


����
�


�
�


����
�


����
�


�


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.19/26







Recursion


����	
��
�
�� , where


��
��
�������������������


can be used in:


�
��
��������������������


can be modeled through:


1. invent� to stand for


�


2. for any


�


,
let


��


denote the result of replacing any call


����� by������
�


3. replace


�


by


���	�
��������	�
���	


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.20/26







Booleans


True


��	
��
��
��
�


�	
�


���


False


��	
��
��
��
�


�	
�


If


��
� foo� bar


	��
�
����	���
�


��
�


���


Check that for all


�
�


�


:


���	� True


����


If


��
� foo� bar


��


“=”


���	� False


����


If


��
� foo� bar


��


“=”


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.21/26







Encoding Tuples


��
�
��
�
�
�


������
��
�
���	�
������


Think about:


�
�
�����
�
�


������������
	
�


�
��


�
�
�����
�
�


���������
	
�


���������
�
�


�
��


��
�
��
�
�
�


������
��
�
���	�
������


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.22/26







Encoding Synchrony


���������
��
�
�������������


...


��
�
�
�
�
�


������
��
�
��	�
������


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.23/26







Encoding Summation


�������
�
�
���


��
��	�
��
�
�


�������������
��


���
��
��	�
��
����
�


��
�
��	�
������


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.24/26







Encoding Lambda-Calculus


�������	
��
��
���


��������	
��
�����
	
�


������
����	����	
��
�
��	�������


�
�


���	��
�
��


�
�


����	�
���������


Try to evaluate/encode


���������	��	���	


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.25/26







“Final Words”


name-passing vs. value-pasing


�


better pragmatics


�


natural programming idioms


�


semantic foundations for all (?) major programming styles


�


. . .


�


security protocols via (s)pi-calculus
(� research at LAMP2 . . . )


Concurrency:Theory, Languages and Programming – Pi Calculus – Session 6 – November 27, 2002 – (produced on March 4, 2004, 18:38) – p.26/26





		 Redexes 

		 Unbounded Structures: Stacks (I)

		 Unbounded Structures: Stacks (II)

		 Unbounded Structures: Stacks (III)

		 Turing Power 

		 Unbounded Structures: Stacks (IV)


		 Unbounded Structures: Stacks (V)


		 Expressiveness 

		 Name-Passing Syntax 

		 Syntax Conventions 

		 Pi Calculus 

		 Mobility ? ``Flowgraphs'' ! 

		 Example: Hand-Over Protocol 

		 Exercise: Overtaking Cars 

		 LTS: Prefixes 

		 LTS: Restriction 

		 LTS: Parallel Composition 

		 LTS: Miscellaneous 

		 Recursion 

		 Booleans 

		 Encoding Tuples 

		 Encoding Synchrony 

		 Encoding Summation 

		 Encoding Lambda-Calculus 

		 ``Final Words'' 




