
Concurrency: Theory, Languages and
Programming

– From CCS to PiLib –

Session 5 – November 20, 2002

Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.1/8

Pilib

�

Pilib is a library, which allows one to use CCS primitives in a
Scala program.

�

CCS constructs are modelled as Scala functions.

�

Their implementation is based on Java’s threads.

�

Pilib’s functions are implemented in two modules:

� concurrency for general thread management.

� pilib for CCS actions and sums.

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.2/8

An Example

Here is a two-place buffer implementation using Pilib.

import concurrency; // make available Pilib functions

import pilib; // without qualification.

module bufferExample with

�

def Buffer [a] (in : Chan [a], out : Chan [a]): Unit =

�

def B0 : Unit =

�

val x = in.read; B1 (x)

�

def B1 (x : a): Unit = choice

�

out (x)� (B0)

�

in� (y

�

B2 (x, y))

�

def B2 (x : a, y : a): Unit =

�

out.write (x); B1 (y)

�

B0 // initial state

�
�

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.3/8

Explanations

�

Chan is the type of CCS names (or: channels).

�

Chan takes a type parameter a, which determines the type
of values that can be read from and written to the channel.

�

The Buffer process is modelled by a recrusive Scala
function, nested functions B0, B1, B2.

�

Each nested function represents a buffer state (0 = empty, 1
= half full, 2 = full).

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.4/8

A Buffer Client

val random = new java.util.Random ();

def Producer (n : Int, l : Chan [String]): Unit =

�

sleep (1

�

random.nextInt (1000));

l.write (”object ”

�

n);

System.out.println (”Producer gave ”

�

n);

Producer (n

�

1, l)

�

def Consumer (r : Chan [String]): Unit =

�

sleep (1

�

random.nextInt (1000));

val a = r.read;

System.out.println (”Consummer took ”

�

a);

Consumer (r)

�

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.5/8

def main (args : Array [String]): Unit =

�

val in = new Chan [String];

val out = new Chan [String];

spawn

�

Producer (0, in)

�

Consumer (out)

�

Buffer (in, out)

�
�

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.6/8

Covered CCS Syntax

Action prefix�����
��� receive� along�

�����	 send� along�

Guarded process

�����
�

Process

����

 summation

���
��� composition

����
�

restriction

������������
	

agent
Agent definition

�����
����������
�
��

Term

�����������
�
�

��

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.7/8

From CCS to Pilib

Guarded process

������
���� * (���
���

)

�����	�
���� (�) * (

���

)

Process

����
������
����
�
�

�
� choice (

����
��
�

+ ... +

����
�
�

�

)

���
�
���

��
�

�
� spawn����

��

...

���
�

��
����
��� { val� = new Chan[T];

���

}

������������
	�
��
����������
�

Agent definition

������������
�
��

�
� def

�����������
�

: Unit =

���

Term

Concurrency: Theory, Languages and Programming – From CCS to PiLib – Session 5 – November 20, 2002 – (produced on March 4, 2004, 18:44) – p.8/8

	 Pilib
	 An Example
	Explanations
	A Buffer Client
	
	Covered CCS Syntax
	From CCS to Pilib

