o .

Concurrency: Theory, Languages and
Programming

— From CCS to PiLib —
Session 5 — November 20, 2002

Martin Odersky

EPFL-LAMP

Pilib

f Pilib is a library, which allows one to use CCS primitives irQ
Scala program.

CCS constructs are modelled as Scala functions.
Their implementation is based on Java’s threads.

Pilib’s functions are implemented in two modules:
concurrency for general thread management.
pilib for CCS actions and sums.

o -

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.2/

-

.

An Example

Here is a two-place buffer implementation using Pilib.

Import concurrency; // make available Pilib functions
import pilib; /[without qualification.

module bufferExample with
def Buffer[a](in: Chan[a], out: Chan[a]): Unit =
def BO: Unit= val x =in.read; B1(x)
def B1(x: a): Unit = choice
out(x) (BO)
in (y B2(x,y))

def B2(x:a,y:a): Unit= out.write(x); B1(y)
BO // initial state

-

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.3/

Explanations

o .

Chan takes a type parameter a, which determines the type
of values that can be read from and written to the channel.

Chan is the type of CCS names (or: channels).

The Buffer process is modelled by a recrusive Scala
function, nested functions BO, B1, B2.

Each nested function represents a buffer state (0 = empty, 1
= half full, 2 = full).

o -

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.4/

A Buffer Client
| o

val random = new java.util.Random ();

def Producer (n: Int, I: Chan[String]): Unit =
sleep(1 random.nextint (1000));
|.write ("object” n);
System.out.println ("Producer gave ” n);
Producer(n 1,1)

def Consumer (r: Chan[String]): Unit =
sleep(1 random.nextint (1000));
val a = r.read,;

System.out.println ("Consummer took ” a);
Consumer (r)

o -

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.5/

def main (args: Array [String]): Unit =
val in = new Chan [String |,
val out = new Chan [String];
spawn Producer (0, in) Consumer (out) Buffer(in, out)

-

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.6/

Covered CCS Syntax
B o

Action prefix receive along
send along

Guarded process

Process > summation
composition
restriction
agent

Agent definition

Term

o -

Concurrenc y: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.7/

From CCS to Pilib
- o

Guarded process

Process
choice (+ ...+)
spawn
{val =new Chan[T]; }

Agent definition
L def : Unit = J

Concurrency: Theory, Languages and Programming — From CCS to PiLib — Session 5 — November 20, 2002 — (produced on March 4, 2004, 18:44) — p.8/

	 Pilib
	 An Example
	Explanations
	A Buffer Client
	
	Covered CCS Syntax
	From CCS to Pilib

