
Concurrency: Theory, Languages and
Programming

– Encoding FP in Lambda Calculus –

Session 3 – Nov 05, 2002

Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.1/19



Program Equivalence

�

Question: When are two lambda terms and

�

equivalent, in the following sense:

�

Exchanging by

�

in a program does not change the
behavior of the program

�

This notion is called operational equivalence, written

��� .

�

It is formalized as follows.

��� iff

��
�

���	
����	�
�

Here,

	

means that evaluation of terminates.

�

Formally,

	

iff

��
�

�

.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.2/19



Operational Equivalence and -Conversion

��

-Reduction also gives rise to another program
equivalence, called convertibility.

�

Define:��� iff

��
�

�����
�

Then�� is the smallest congruence that includes reduction

 .

�

Also, we have that:�������
�

Question: : Name two terms�
�

such that

��� but not

��� ?

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.3/19



Church Encodings

�

The treatment so far covered pure lambda calculus which
consists of just functions and their applications.

�

Actual programming languages add to this primitive data
types and their operations, named value and function
definitions, and much more.

�

We can model these constructs by extending the basic
calculus.

�

But it is also possible to encode these constructs in the
basic calculus itself.

�

These encodings will be presented in the following.

�

We will assume in general call-by-name evaluation, but will
also work out modifications needed for call-by-value.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.4/19



Encoding of Booleans

�

An abstract type of booleans is given by the two constants
true and false as well as the conditional if.

�

Other constructs can be written in terms of these primitives.
E.g.

not x = if (x ) false else true

x

��

y = if (x ) true else y

x && y = if (x ) y else false

�

Idea: : The encoding of a boolean value B

��

true,false

�

is
the binary function

�

x.

�

y. if (B ) x else y

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.5/19



That is:

true

���
��

x.

�

y. x

false

���
��

x.

�

y. y

if c x y

���
�

c x y

Example:

if (true ) D else E

���
�

true D E

���
�

(

�

x .

�

y. x ) D E



(

�

y . D ) E



D

Question: What changes to this encoding are necessary if the

evaluation strategy is call-by-value?

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.6/19



Encoding of Lists

The encoding of Booleans can be generalized to arbitrary
algebraic data types.
Example: Consider the type of lists (as defined in Haskell):

data List a = Nil

�

Cons a (List a )

This defines a type of lists with (nullary) constructor Nil and
(curried binary) constructor Cons.
A list xs can be accessed using a case-expression

case xs of Nil

����� E�
�

Cons x xs

�

E�

Here, the expression of the second branch, E� , can refer to the

variables x and xs defined in the Cons pattern.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.7/19



All other functions over lists can be written in terms of the
case-expression.
For instance, function car which equals head except that it
avoids errors, can be written as:

car xs =

case xs of

Nil

�

Nil

�

Cons y ys

�

x

Question: How can lists be encoded?
Same principle as before: Equate a list with the
case-expression that accesses it.

xs

���
��

a.

�

b.case xs of Nil

�

a

�

Cons x xs

�

b x xs

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.8/19



That is:

Nil

���
��

a.

�

b. a

Cons x xs

���
��

a.

�

b. b x xs

or, equivalently:

Cons

���
��

x.

�

xs.

�

a.

�

b. b x xs

The pattern-bound names x and xs are now passed as
parameters to the case branch that accesses them.
Example: : car is coded as follows:

car

���
��

xs. xs Nil (

�

y.

�

ys.y )

Exercise: Church-encode function isEmpty which returns true
iff the given list is empty.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.9/19



Encoding of Numbers

The encoding for lists generalizes to arbitrary data types which
are defined in terms of a finite number of constructors.
For instance, whole numbers don’t present any new difficulties.
To see this, note that natural numbers can be coded as
algebraic data types as follows:

data Nat = Zero

�

Succ Nat

Hence:

Zero

���
��

a.

�

b.a

Succ x

���
��

a.

�

b.b x

Note: Church encodings do not reflect types. In fact Zero, Nil,
and true are all mapped to the same term!

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.10/19



Encoding of Definitions

A non-recursive value definition val x = D ; E can be encoded as:

val x = D ; E

���
�

(

�

x.E ) D

Caveat: With a call-by-name strategy, D might be evaluated more
than once.
Let’s try an analogous principle for function definitions:

def f x = D ; E

���
� val f =

�

x.D ; E

���
�

(

�

f.E ) (

�

x.D )

But this fails if f is used recursively in D! (Why?)

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.11/19



Fixed Points to the Rescue

If we have a recursive definition of

val f = E

where E refers to f, we can interpret this as a solution to the
equation

���

Another way to characterize solutions to this equation is to say
that these solutions are fixed points of the function

��
�

�

.

Definition: A fixed point of a function

�

is a value� such that

����

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.12/19



Proposition: The solutions of

��� are exactly the fixed
points of

��
�

�

Proof:

�

is a solution of the equation

���

iff

��������

iff

������
���

iff

�

is a fixed point of

��
�

�

.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.13/19



Fixed Point Operators

Let’s assume the existence of a fixed point operator

�

. For
every function

�

,

��

evaluates to a fixed point of

�

. That is,

��������

Then we can encode potentially recursive definitions as follows:

def f x = D ; E

���
� val f = Y (

�

f.

�

x.D ) ; E

���
�

(

�

f.E ) (Y (

�

f.

�

x.D ) )

Remains the question whether

�

exists.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.14/19



Proposition: Let

�
��
�

����
����
����������
������

Then

�

is a fixed point operator:

��������

Proof: By repeated

�

-reduction.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.15/19



Least Fixed Points

In fact, an equation will in general have several solutions, and a
function will in general have several fixed points.

Example: The equation

���

has every

�

-term as a solution.
Can we characterize the fixed point computed by

�

?

Proposition: Among all the fixed points of a function

�

,

��

will
return the one which diverges most often. This is also called the
least fixed point of the function

�

.

Exercise: Find the least fixed point of

��
�

�

(which is also the

least solution of the equation

��� ).

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.16/19



Connection to Domain Theory

�

The definition of least fixed points is made precise in the
field of domain theory.

�

Domain theory gives

�

-terms meaning by mapping them to
mathematical functions.

�

Divergent terms are modeled by a value

�

, which stands for
“undefined”.

�

Domain theory introduces a partial ordering on values
which makes

�

smaller than any defined value.

�

The fixed points computed by

�

are the smallest with
respect to this ordering.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.17/19



Summary

�

We have seen the basic theory of

�

-calculus, and how it can
express functional programming.

�

Two main variants: Call-by-value and call-by-name.

�

In each case, evaluation is described by reduction of
function applications, using rule

�

(or

�
� ).

��

-calculus has two important properties, which make it well
suited as a basis of deterministic programming languages:

� Confluence: Every term can be reduced to at most one
value.

� Standardization: There exists a deterministic reduction
strategy which always reduces a term to a value,
provided it can be done at all.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.18/19



Outlook

��

-calculus is ideally suited as a basis for functional
programming.

�

But it is less well suited as basis for imperative programming
with side effects (essentially, need to introduce and carry
along a data structure describing global state).

�

It is not suitable at all as a basis for reactive systems with
concurrent evaluation.

�

Two new issues:

� Non-determinism: If programs can have several behaviors,
confluence no longer holds.

� Non-termination: Operational equivalence needs to be
adapted for programs that do not terminate.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.19/19


	Program Equivalence
	Operational Equivalence and mth �eta -Conversion
	Church Encodings
	Encoding of Booleans
	
	Encoding of Lists
	
	
	Encoding of Numbers
	Encoding of Definitions
	Fixed Points to the Rescue
	
	Fixed Point Operators
	
	Least Fixed Points
	Connection to Domain Theory
	Summary
	Outlook

