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Program Equivalence

�

Question: When are two lambda terms and

�

equivalent, in the following sense:

�

Exchanging by

�

in a program does not change the
behavior of the program

�

This notion is called operational equivalence, written

��� .

�

It is formalized as follows.

��� iff

��
�

���	
����	�
�

Here,

	

means that evaluation of terminates.

�

Formally,

	

iff

��
�

�

.
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Operational Equivalence and -Conversion

��

-Reduction also gives rise to another program
equivalence, called convertibility.

�

Define:��� iff

��
�

�����
�

Then�� is the smallest congruence that includes reduction

 .

�

Also, we have that:�������
�

Question: : Name two terms�
�

such that

��� but not

��� ?
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Church Encodings

�

The treatment so far covered pure lambda calculus which
consists of just functions and their applications.

�

Actual programming languages add to this primitive data
types and their operations, named value and function
definitions, and much more.

�

We can model these constructs by extending the basic
calculus.

�

But it is also possible to encode these constructs in the
basic calculus itself.

�

These encodings will be presented in the following.

�

We will assume in general call-by-name evaluation, but will
also work out modifications needed for call-by-value.
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Encoding of Booleans

�

An abstract type of booleans is given by the two constants
true and false as well as the conditional if.

�

Other constructs can be written in terms of these primitives.
E.g.

not x = if (x ) false else true

x

��

y = if (x ) true else y

x && y = if (x ) y else false

�

Idea: : The encoding of a boolean value B

��

true,false

�

is
the binary function

�

x.

�

y. if (B ) x else y
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That is:

true

���
��

x.

�

y. x

false

���
��

x.

�

y. y

if c x y

���
�

c x y

Example:

if (true ) D else E

���
�

true D E

���
�

(

�

x .

�

y. x ) D E



(

�

y . D ) E



D

Question: What changes to this encoding are necessary if the

evaluation strategy is call-by-value?
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Encoding of Lists

The encoding of Booleans can be generalized to arbitrary
algebraic data types.
Example: Consider the type of lists (as defined in Haskell):

data List a = Nil

�

Cons a (List a )

This defines a type of lists with (nullary) constructor Nil and
(curried binary) constructor Cons.
A list xs can be accessed using a case-expression

case xs of Nil

����� E�
�

Cons x xs

�

E�

Here, the expression of the second branch, E� , can refer to the

variables x and xs defined in the Cons pattern.
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All other functions over lists can be written in terms of the
case-expression.
For instance, function car which equals head except that it
avoids errors, can be written as:

car xs =

case xs of

Nil

�

Nil

�

Cons y ys

�

x

Question: How can lists be encoded?
Same principle as before: Equate a list with the
case-expression that accesses it.

xs

���
��

a.

�

b.case xs of Nil

�

a

�

Cons x xs

�

b x xs
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That is:

Nil

���
��

a.

�

b. a

Cons x xs

���
��

a.

�

b. b x xs

or, equivalently:

Cons

���
��

x.

�

xs.

�

a.

�

b. b x xs

The pattern-bound names x and xs are now passed as
parameters to the case branch that accesses them.
Example: : car is coded as follows:

car

���
��

xs. xs Nil (

�

y.

�

ys.y )

Exercise: Church-encode function isEmpty which returns true
iff the given list is empty.
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Encoding of Numbers

The encoding for lists generalizes to arbitrary data types which
are defined in terms of a finite number of constructors.
For instance, whole numbers don’t present any new difficulties.
To see this, note that natural numbers can be coded as
algebraic data types as follows:

data Nat = Zero

�

Succ Nat

Hence:

Zero

���
��

a.

�

b.a

Succ x

���
��

a.

�

b.b x

Note: Church encodings do not reflect types. In fact Zero, Nil,
and true are all mapped to the same term!
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Encoding of Definitions

A non-recursive value definition val x = D ; E can be encoded as:

val x = D ; E

���
�

(

�

x.E ) D

Caveat: With a call-by-name strategy, D might be evaluated more
than once.
Let’s try an analogous principle for function definitions:

def f x = D ; E

���
� val f =

�

x.D ; E

���
�

(

�

f.E ) (

�

x.D )

But this fails if f is used recursively in D! (Why?)
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Fixed Points to the Rescue

If we have a recursive definition of

val f = E

where E refers to f, we can interpret this as a solution to the
equation

���

Another way to characterize solutions to this equation is to say
that these solutions are fixed points of the function

��
�

�

.

Definition: A fixed point of a function

�

is a value� such that

����
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Proposition: The solutions of

��� are exactly the fixed
points of

��
�

�

Proof:

�

is a solution of the equation

���

iff

��������

iff

������
���

iff

�

is a fixed point of

��
�

�

.
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Fixed Point Operators

Let’s assume the existence of a fixed point operator

�

. For
every function

�

,

��

evaluates to a fixed point of

�

. That is,

��������

Then we can encode potentially recursive definitions as follows:

def f x = D ; E

���
� val f = Y (

�

f.

�

x.D ) ; E

���
�

(

�

f.E ) (Y (

�

f.

�

x.D ) )

Remains the question whether

�

exists.
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Proposition: Let

�
��
�

����
����
����������
������

Then

�

is a fixed point operator:

��������

Proof: By repeated

�

-reduction.

Concurrency: Theory, Languages and Programming – Encoding FP in Lambda Calculus – Session 3 – Nov 05, 2002 – (produced on March 4, 2004) – p.15/19



Least Fixed Points

In fact, an equation will in general have several solutions, and a
function will in general have several fixed points.

Example: The equation

���

has every

�

-term as a solution.
Can we characterize the fixed point computed by

�

?

Proposition: Among all the fixed points of a function

�

,

��

will
return the one which diverges most often. This is also called the
least fixed point of the function

�

.

Exercise: Find the least fixed point of

��
�

�

(which is also the

least solution of the equation

��� ).
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Connection to Domain Theory

�

The definition of least fixed points is made precise in the
field of domain theory.

�

Domain theory gives

�

-terms meaning by mapping them to
mathematical functions.

�

Divergent terms are modeled by a value

�

, which stands for
“undefined”.

�

Domain theory introduces a partial ordering on values
which makes

�

smaller than any defined value.

�

The fixed points computed by

�

are the smallest with
respect to this ordering.
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Summary

�

We have seen the basic theory of

�

-calculus, and how it can
express functional programming.

�

Two main variants: Call-by-value and call-by-name.

�

In each case, evaluation is described by reduction of
function applications, using rule

�

(or

�
� ).

��

-calculus has two important properties, which make it well
suited as a basis of deterministic programming languages:

� Confluence: Every term can be reduced to at most one
value.

� Standardization: There exists a deterministic reduction
strategy which always reduces a term to a value,
provided it can be done at all.
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Outlook

��

-calculus is ideally suited as a basis for functional
programming.

�

But it is less well suited as basis for imperative programming
with side effects (essentially, need to introduce and carry
along a data structure describing global state).

�

It is not suitable at all as a basis for reactive systems with
concurrent evaluation.

�

Two new issues:

� Non-determinism: If programs can have several behaviors,
confluence no longer holds.

� Non-termination: Operational equivalence needs to be
adapted for programs that do not terminate.
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