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Part I: Functional Programming


�


A pure functional program consists of data, functions, and
an expression which describes a result.


�


Missing: variables, assignment, side-effects.


�


A processor of a functional program is essentially a
calculator.


Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.2/60







Example: (transcript of a session with siris, the Scala
interpreter)


/home/odersky/tmp


�


siris


�


def gcd (a : Int, b : Int ): Int = if (b�� 0 ) a else gcd (b, a


�


b )


’def gcd’


�


gcd (8, 10 )


2


�


val x = gcd (15, 70 )


val x : int = 5


�


val y = gcd (x, x )


val y : int = 5
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Why Study Functional Programming?


�


FP is programming in its simplest form� easier to
understand thoroughly than more complex variants.


�


FP has powerful composition constructs.


�


In FP, one the value of an expression matters since side
effects are impossible. (this property is called referential
transparency).


�


Referential transparency gives a rich set of laws to
transform programs.


�


FP has a well-established theoretical basis in Lambda
Calculus and Denotational Semantics.
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Square Roots by Newton’s Method


Compute the square root of a given number� as a limit of the
sequence�� given by:


����
�����
�����
	��

	�
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The


����� step is encoded in the function improve:


�


def improve (guess : Double, x : Double ) = (guess


�


x / guess ) / 2


def improve : (guess : double,x : double )double


�


val y0 = 1.0


val y0 : double = 1.0


�


val y1 = improve (y0, 2.0 )


val y1 : double = 1.5


�


val y2 = improve (y1, 2.0 )


val y2 : double = 1.4166666666666665


�


val y3 = improve (y2, 2.0 )


val y3 : double = 1.4142156862745097
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We have to stop the iteration when the result is good enough:


�


def abs (x : Double ): Double = if (x


�


0 ) x else� x


def abs : (x : double )double


�


def goodEnough (guess : Double, x : Double ): Boolean =


�


abs ( (guess� guess )� x )


�


0.001


def goodEnough : (guess : double,x : double )boolean


�


def sqrtIter (guess : Double, x : Double ): Double =


�


if (goodEnough (guess, x ) ) guess else sqrtIter (improve (guess, x ), x )


def sqrtIter : (guess : double,x : double )double


�


def sqrt (x : Double ): Double = sqrtIter (1.0, x )


def sqrt : (x : double )double


�


sqrt (2.0 )


1.4142156862745097
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Language Elements Seen So Far


�


Function Definitions:
def Ident Parameters [‘:’ ResultType ] ”=” Expression


�


Value definitions:


val Ident ”=” Expression


�


Function application: Ident’ (’ Expr� , ..., Expr� ‘ )’


�


Tuples: (Expr� , ..., Expr� )


�


Numbers, operators: as in Java


�


If-then-else: as in Java, but as an expression.


�


Types: as in Java, but written upper case.
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Nested Functions


If functions are used only internally by some other function we
can avoid “name-space pollution” by nesting. E.g:


def sqrt (x ) =


�


def improve (guess, x ) = (guess


�


x / guess ) / 2


def goodEnough (guess, x ) = abs ( (guess� guess )� x )


�


0.001f


def sqrtIter (guess, x ) =


if (goodEnough (guess, x ) ) guess


else sqrtIter (improve (guess, x ), x )


sqrtIter (1.0, x )


�


The visibility of an identifier extends from its own definition to the


end of the enclosing block, including any nested definitions.
Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.9/60







Exercise:


�


The goodEnough function tests the absolute difference
between the input parameter and the square of the guess.


�


This is not very accurate for square roots of very small
numbers and might lead to divergence for very large
numbers (why?).


�


Design a different sqrtIter function which stops if the change
from one iteration to the next is a small fraction of the
guess. E.g.


�
�
�
���������

	��

��
�


���


Complete:


def sqrtIter (guess : Double, x : Double ) = ?
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Semantics of Function Application


�


One simple rule: A function application f (A ) is evaluated by


� replacing the application with the function’s body where


� actual parameters A replace formal parameters of f.


�


This can be formalised as a rewriting of the program itself:


def f (x ) = B ; ... f (A )


�


def f (x ) = B ; ... [A/x ] B


�


Here, [A/x ] B stands for B with all occurrences of x replaced
by A.


�


[A/x ] B is called a substitution.
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Rewriting Example:


Consider gcd:


def gcd (a : Int, b : Int ) = if (b�� 0 ) a else gcd (b, a


�


b )


Then gcd (14, 21 ) evaluates as follows:


gcd (14, 21 )


�


if (21�� 0 ) 14 else gcd (21, 14


�


21 )


�


gcd (21, 14 )


�


if (14�� 0 ) 21 else gcd (14, 21


�


14 )


��


gcd (14, 7 )


�


if (7�� 0 ) 14 else gcd (7, 14


�


7 )


��


gcd (7, 0 )


�


if (0�� 0 ) 7 else gcd (0, 7


�


0 )


�


7
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Another rewriting example:


Consider factorial:


def factorial (n : Int ) = if (n�� 0 ) 1 else n� factorial (n� 1 )


Then factorial (5 ) rewrites as follows:


factorial (5 )


�


if (5�� 0 ) 1 else 5� factorial (5� 1 )


�


5� factorial (5� 1 )


�


5� factorial (4 )


�


...


�


5� (4� factorial (3 ) )


�


...


�


5� (4� (3� factorial (2 ) ) )


�


...


�


5� (4� (3� (2� factorial (1 ) ) ) )


�


...


�


5� (4� (3� (2� (1� factorial (0 ) ) ) )


�


...


�


5� (4� (3� (2� (1� 1 ) ) ) )


�


...


�


120
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Question:


What differences are there between the two rewrite sequences?
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Tail Recursion


�


Implementation note: If a function calls itself as its last
action, the function’s stack frame can be re-used. This is
called “tail recursion”.


�� Tail-recursive functions are iterative processes.


�


More generally, if the last action of a function is a call to
another (possible the same) function, only a single stack
frame is needed for both functions. Such calls are called
“tail calls”.


Exercise: Design a tail-recursive version of factorial.
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First-Class Functions


�


Most functional languages treat functions as “first-class
values”.


�


That is, like any other value, a function may be passed as a
parameter or returned as a result.


�


This provides a flexible mechanism for program
composition.


�


Functions which take other functions as parameters or
return them as results are called “higher-order” functions..
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Example


�


Sum integers between a and b:


def sumInts (a : Int, b : Int ): Double =


if (a


�


b ) 0.0 else a


�


sumInts (a


�


1, b );


�


Sum cubes of all integers between a and b:


def cube (a : Int ) = a� a� a;


def sumCubes (a : Int, b : Int ): Double =


if (a


�


b ) 0.0 else cube (a )


�


sumCubes (a


�


1, b );


�


Sum reciprocals between a and b


def sumReciprocals (a : Int, b : Int ): Double =


if (a


�


b ) 0 else 1.0 / a


�


sumReciprocals (a


�


1, b );


�


These are all special cases of


�
�


���
 for different values of


�


.
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Summation with a higher-order function


�


Can we factor out the common pattern?


�


Define:


def sum (f : (Int )Double, a : Int, b : Int ): Double =


if (a


�


b ) 0.0 else f (a )


�


sum (f, a


�


1, b );


�


Then we can write:


def sumInts (a : Int, b : Int ) = sum (id, a, b )


def sumCubes (a : Int, b : Int ) = sum (cube, a, b )


def sumReciprocals (a : Int, b : Int ) = sum (reciprocal, a, b )


where
def id (x : Int ) = x


def cube (x : Int ) = x� x� x


def reciprocal (x : Int ) = 1.0 / x


Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.18/60







Anonymous functions


�


Parameterisation by functions tends to create many small
functions.


�


Sometimes it is cumbersome to have to define the functions
using def.


�


A shorter notation makes use of anonymous functions,
defined as follows:
(x� : T� , ..., x� : T� E ) defines a function which maps its
parameters x� , ..., x� to the result of the expression E
(where E may refer to x� , ..., x� ).


�


The parameter types T� may be omitted if they can be
reconstructed “from the context”.


Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.19/60







�


Anonymous functions are not essential in Scala; an
anonymous function (x� , ..., x� E ) can always be
expressed using a def as follows:


�


def f (x� : T� , ..., x� : T� ) = E ; f


�


where f is fresh name which is used nowhere else in the
program.


�


We also say, anonymous functions are “syntactic sugar”.
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Summation with Anonymous Functions


Now we can write shorter:


def sumInts (a : Int, b : Int ) = sum ( (x


�


x ), a, b )


def sumCubes (a : Int, b : Int ) = sum ( (x


�


x� x� x ), a, b )


def sumReciprocals (a : Int, b : Int ) = sum ( (x


�


1.0 / x ), a, b )


Can we do even better?


Hint: a, b appears everywhere and does not seem to take part in


interesting combinations. Can we get rid of it?
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Currying


Let’s rewrite sum as follows.


def sum (f : (Int )Double ) =


�


def sumFun (a : Int, b : Int ): Double =


if (a


�


b ) 0.0


else f (a )


�


sumFun (a


�


1, b );


sumFun


�
�


sum is now a function which returns another function;


�


Namely, the specialized summing function which applies the
f function and sums up the results.
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Then we can define:


val sumInts = sum (x


�


x )


val sumCubes = sum (x


�


x� x� x )


val sumReciprocals = sum (x


�


1.0 / x )


Function values can be applied like other functions:


sumReciprocals (1, 1000 )
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Curried Application


How are function-returning functions applied?
Example:


�


sum (cube ) (1, 10 )


3025


�


sum (cube ) applies sum to cube and returns the
“cube-summing function” (Hence, sum (cube ) is equivalent
to sumCubes).


�


This function is then applied to the pair (1, 10 ).


�


Hence, function application associates to the left:


sum (cube ) (1, 10 )�� (sum (cube ) ) (1, 10 )


�� val sc = sum (cube ) ; sc (1, 10 )
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Curried Definition


�


The style of function-returning functions is so useful in FP,
that we have special syntax for it.


�


For instance, the next definition of sum is equivalent to the
previous one, but shorter:


def sum (f : (Int, Int )Double ) (a; Int, b : Int ): Double =


�


if (a


�


b ) 0.0


else f (a )


�


sum (f ) (a


�


1, b )


�
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Generally, a curried function definition


def f (args� ) ... (args� ) = E


where��� expands to


def f (args� ) ... (args��
� ) = ( def g (args� ) = E ; g )


where g is a fresh identifier. Or, shorter:


def f (args� ) ... (args��
� ) = ( args�
�


E )


Performing this step� times yields that


def f (args� ) ... (args��
� ) (args� ) = E


is equivalent to


def f = (args�
�


( args�
�


... ( args�
�


E ) ... ) )
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�


Again, parentheses around single-name formal parameters
may be dropped.


�


This style of function definition and application is called
currying after its promoter, Haskell B. Curry.


�


Actually, the idea goes back further to Frege and
Schönfinkel, but the name “curried” caught on (maybe
because “schönfinkeled” does not sound so well.)
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Exercises:


1. The sum function uses a linear recursion. Can you write a
tail-recursive one by filling in the ??’s?


def sum f (a : Int, b : Int ): Double =


�


def iter (a : Int, result : Double ): Double =


�


if (?? ) ??


else iter (??, ?? )


�


iter (??, ?? )


�
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2. Write a function product that computes the product of the
values of functions at points over a given range.


3. Write factorial in terms of product.


4. Can you write an even more general function which
generalizes both sum and product?
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Part II: Lambda Calculus


�


Lambda Calculus is a foundation for functional programs.


�


It’s an operational semantics, based on term rewriting.


�


Lambda Calculus was developed by Alonzo Church in the
1930’s and 40’s as a theory of computable functions.


�


Lambda calculus is as powerful as Turing machines. That
is, every Turing machine can be expressed as a function in
the calculus and vice versa


�


Church Hypothesis: Every computable algorithm can be
expressed by a function in Lambda calculus.
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Pure Lambda Calculus


�


Pure Lambda calculus expresses only functions and
function applications.


�


Three term forms:


Names�����
�


Terms


�
�


�
�


����� names


���
�


�


abstractions


���


applications


�


We generally omit parentheses around single-name
function arguments.


�


Function-application is left-associative.


�


The scope of a name extends as far to the right as possible.
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�


Example:


��
�


��
�


�������
�


���
�


�����

��




�


�


Often, one uses the term variable instead of name.
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Evaluation of Lambda Terms


Evaluation of lambda terms is by the


�


-reduction rule.


�����
�


�
����	���
��	�� is substitution, which will be explained in detail later.


Example:


���
�
�
���
�
�
���
�
�


���
�


��
�


����

���
�
�
�����
�


���
�
�
���
�
�
�
�


����
�
�
����
�
�
�



����
�
�
�


��
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Term Equivalence


Question: Are these terms equivalent?


��
�
� and


��
�
�


What about


��
�
� and


��
�
�


?


Need to distinguish between bound and free names.
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Free And Bound Names


Definition The free names


��
��



of a term


�


are those names
which occur in


�


at a position where they are not in the scope of
a definition in the same term.


Formally,


��
��



is defined as follows.


��
��
�
���


��
���
�


�
���
��
����


��
���
���
��
�����

�


All names which occur in a term


�


and which are not free in


�


are called bound.


A term without any free variables is called closed.
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Renaming


�


The spelling of bound names is not significant.


�


We regard terms


�


and


�


which are convertible by
renaming of bound names as equivalent, and write


���
�


This is expressed formally by the following� -renaming rule:


����
�


����
�


��	�����������




Formally,� is the smallest congruence which contains the
equality of rule� .
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Substitutions


�


We now have the means to define substitution formally:


��	�����
��	�����
�����




��	����
�


����
�


�
��	����
�


����
�


��	����������
������




��	�����
�
���	���
���	���



�


Substitution affects only the free names of a term, not the
bound ones.
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Avoiding Name Capture


�


We have to be careful that we do not bind free names of a
substituted expression (this is called name capture).


�


For instance,


��	����
�
�����
�
����


�


We have to� -rename


��
�
� first before applying the


substitution:


��	����
�
����	����
�
� by�


���
�
�


�


In the following, we will always assume that terms are
renamed automatically so as to make all substitutions
well-defined.
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Normal Forms


Definition: We write�� for reduction in an arbitrary number of
steps. Formally:


����� iff


����
�


�����
���
����
��


Definition: A normal form is a term which cannot be reduced
further.


Exercise: Define:


�
���
���
�


��
�


��
�


�����

�


���
���
�


��
�
�


Can


���


be reduced to a normal form?


Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.39/60







Combinators


�


Lambda calculus gives one the possibility to define new
functions using


�


abstractions.


�


Question : Is that really necessary for expressiveness, or
could one also do with a fixed set of functions?


�


Answer: (by Haskell Curry) Every closed


�


-definable function
can be expressed as some combination of the combinators


�


and


�


.
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Combinator Implementation Technique


�


This insight has influenced the implementation of one
functional language (Miranda).


�


The Miranda compiler translates a source program to a
combination of a handful of combinators (


�


,


�


, and a few
others for “optimizations”).


�


A Miranda runtime system then only has to implement the
handful of combinators.


�


Very elegant, but “slow as continental drift”.
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Confluence


If a term had more than one normal form, we’d have to worry
about an implementation finding “the right one”.
The following important theorem shows that this case cannot
arise.


Theorem: (Church-Rosser) Reduction in


�


-calculus is
confluent: If


����� and


����� , then there exists a term


�
�


such that


�
����� and


�
����� .


Proof: Not easy.


Corollary: Every term can be reduced to at most one normal
form.
Proof: Your turn.
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Terms Without Normal Forms


�


There are terms which do not have a normal form.


�


Example: Let


�
���
����
�


���

���
�


���




Then


�����
�


���

���
�


���


����
�


���

���
�


���


�
���


�


Terms which cannot be reduced to a normal form are called
divergent.
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Evaluation Strategies


The existence of terms without normal forms raises the
question of evaluation strategies.


For instance, let


�
���
���
�
� and consider:


���
�


�
�
��


in a single step. But one could also reduce:


���
�


�
�
����
�


�
�
�
���


by always doing the


��� reduction.
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Complete Evaluation Strategies


An evaluation strategy is a decision procedure which tells us
which rewrite step to choose, given a term where several
reductions are possible.
Question 1: Is there a complete evaluation strategy, in the
following sense:


Whenever a term has a normal form, the reduction
using the strategy will end in that normal form.


?
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Weak Head Normal Forms


In practice, we are not so much interested in normal forms; only
in terms which are not further reducible “at the top level”.
That is, reduction would stop at a term of the form


��
�


�


even if


�


was still reducible.
These terms are called weak head normal forms or values.
They are characterized by the following grammar.


Values


�����
���
�


�


We now reformulate our question as follows:


Question 2: Is there a (weakly) complete evaluation strategy, in
the following sense:


Whenever a term can be reduced to a value, the
reduction using the strategy will end in that value.
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Precise Definition of Evaluation Strategy


�


How can we define evaluation strategies formally?


�


Idea: Use reduction contexts.


Definition: A context


�


is a term where exactly one subterm is
replaced by a “hole”, written


��


.


����


denotes the term which results if the hole of context


�


is
filled with term


�


.


�


Examples of contexts:


����
�


��
�


����
�


���
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�


Previously, we have admitted reduction anywhere in a term
without explicitly saying so.


�


Let’s formalize this:


Definition: A term


�


reduces at top-level to a term


��


, if


�


and


��


are the left- and right-hand sides of an instance of rule


�


. We
write in this case:


����� .


Definition: A term


�


reduces to a term


�


’, written


���� if
there exists a context


�


and terms


�


,


��


such that


������
��������


�����
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�


So much for general reduction.


�


Now, to define an evaluation strategy, we restrict the
possible set of contexts in the definition of� .


�


The restriction can be expressed by giving a grammar
which describes permissible contexts.


�


Such contexts are called reduction contexts and we let the
letter


�


range over them
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Call-By-Name


Definition: The call-by-name strategy is given by the following
grammar for reduction-contexts:


����
�����


Definition: A term


�


reduces to a term


�


’ using the
call-by-name strategy, written


��


cbn


��


if there exists a
reduction context


�


and terms


�


,


��


such that


������
��������


�����
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Deterministic Reduction Strategies


Definition: A reduction strategy is deterministic if for any term
at most one reduction step is possible.


Proposition: The call-by-name strategy�


cbn is deterministic.


Proof: There is only one way a term can be split into a reduc-


tion context R and a subterm which is reducible at top-level.
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Exercise: Reduce the term


���


with the call-by-name
strategy, where


�
���
���
�


��
�
�


�
���
���
�
�


�
���
����
�


���

���
�


���




Theorem: (Standardization) Call-by-name reduction is weakly
complete: Whenever


���� then


���


cbn


��


.
Proof: hard.
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Normal Order Reduction


Question:


�


Modify call-by-name reduction to normal-order reduction,
which always reduces a term to a normal form, if it has one.


�


Which changes to the definition of reduction contexts


�


are
necessary?
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�


In practice, call-by-name is rarely used since it leads to
duplicate evaluations of arguments. Example:


���
�


����

����
�
�
���
�
�




����
�
�
���
�
�
����
�
�
���
�
�
�



����
�
�
����
�
�
���
�
�
�



����
�
�
����
�
�
�



����
�
�
�


��
�


Note that the argument


���
�
�
���
�
�
 is evaluated twice.
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�


A shorter reduction can often be achieved by evaluating
function arguments before they are passed. In our example:


���
�


����

����
�
�
���
�
�




����
�


����

���
�
�



����
�
�
����
�
�
�



����
�
�
�


��
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Call-By-Value


�


The call-by-value strategy evaluates function arguments
before applying the function.


�


It is often more efficient than the call-by-name strategy.
However:


Proposition: The call-by-value strategy is not (weakly)
complete.


�


Question: Name a term which can be reduced to a value
following the call-by-name strategy, but not following the
call-by-value strategy.


�


Hence we have a dilemma: One strategy is in practice too
inefficient, the other is incomplete.
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First Solution: Call-By-Need Evaluation


� Idea: Rather than re-evaluating arguments repeatedly,
save the result of the first evaluation and use that for
subsequent evaluations.


�


This technique is called memoization.


�


It is used in implementations of lazy functional languages
such as Miranda or Haskell.


�


A formalization of call-by-need is possible, but beyond the
scope of this course. See


A Call-by-Need Lambda Calculus, Zena Ariola,
Matthias Felleisen, John Maraist, Martin Odersky and
Philip Wadler. Proc. ACM Symposium on Principles of
Programming Languages, 1995.


Exercise: What is a good data representation for call-by-need
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Second Solution: Call-By-Value Calculus


�


Rather than tweaking the evaluation strategy to be complete
with respect to a given calculus, we can also change the
calculus so that a given evaluation strategy becomes
complete with respect to it.


�


This has been done by Gordon Plotkin, in the call-by-value
lambda calculus.


�


The terms and values of this calculus are defined as before.
A more concise re-formulation is:


Terms


�
�


�
�


�����
���


Values


�
�����


���
�


�
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�


As reduction rule, we have:


�
��


���
�


�
����	���
�


As reduction contexts, we have:


�
����


����
�
����
�
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�


Let�� be general reduction of terms with the


�
� rule, and


let�


cbv be


�
� reduction only at the holes of call-by-value


reduction contexts


�
� . Then we have:


Theorem: (Plotkin)�� reduction is confluent.


Theorem: (Plotkin)�


cbv is weakly complete with respect to


�� .
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