

Concurrency: Theory, Languages and
Programming

– Functional Programming and
Lambda Calculus –

Session 2 – Oct 30rd, 2002

Martin Odersky

EPFL-LAMP

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.1/60

Part I: Functional Programming

�

A pure functional program consists of data, functions, and
an expression which describes a result.

�

Missing: variables, assignment, side-effects.

�

A processor of a functional program is essentially a
calculator.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.2/60

Example: (transcript of a session with siris, the Scala
interpreter)

/home/odersky/tmp

�

siris

�

def gcd (a : Int, b : Int): Int = if (b�� 0) a else gcd (b, a

�

b)

’def gcd’

�

gcd (8, 10)

2

�

val x = gcd (15, 70)

val x : int = 5

�

val y = gcd (x, x)

val y : int = 5

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.3/60

Why Study Functional Programming?

�

FP is programming in its simplest form� easier to
understand thoroughly than more complex variants.

�

FP has powerful composition constructs.

�

In FP, one the value of an expression matters since side
effects are impossible. (this property is called referential
transparency).

�

Referential transparency gives a rich set of laws to
transform programs.

�

FP has a well-established theoretical basis in Lambda
Calculus and Denotational Semantics.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.4/60

Square Roots by Newton’s Method

Compute the square root of a given number� as a limit of the
sequence�� given by:

����
�����
�����
	��

	�

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.5/60

The

����� step is encoded in the function improve:

�

def improve (guess : Double, x : Double) = (guess

�

x / guess) / 2

def improve : (guess : double,x : double)double

�

val y0 = 1.0

val y0 : double = 1.0

�

val y1 = improve (y0, 2.0)

val y1 : double = 1.5

�

val y2 = improve (y1, 2.0)

val y2 : double = 1.4166666666666665

�

val y3 = improve (y2, 2.0)

val y3 : double = 1.4142156862745097

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.6/60

We have to stop the iteration when the result is good enough:

�

def abs (x : Double): Double = if (x

�

0) x else� x

def abs : (x : double)double

�

def goodEnough (guess : Double, x : Double): Boolean =

�

abs ((guess� guess)� x)

�

0.001

def goodEnough : (guess : double,x : double)boolean

�

def sqrtIter (guess : Double, x : Double): Double =

�

if (goodEnough (guess, x)) guess else sqrtIter (improve (guess, x), x)

def sqrtIter : (guess : double,x : double)double

�

def sqrt (x : Double): Double = sqrtIter (1.0, x)

def sqrt : (x : double)double

�

sqrt (2.0)

1.4142156862745097

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.7/60

Language Elements Seen So Far

�

Function Definitions:
def Ident Parameters [‘:’ ResultType] ”=” Expression

�

Value definitions:

val Ident ”=” Expression

�

Function application: Ident’ (’ Expr� , ..., Expr� ‘)’

�

Tuples: (Expr� , ..., Expr�)

�

Numbers, operators: as in Java

�

If-then-else: as in Java, but as an expression.

�

Types: as in Java, but written upper case.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.8/60

Nested Functions

If functions are used only internally by some other function we
can avoid “name-space pollution” by nesting. E.g:

def sqrt (x) =

�

def improve (guess, x) = (guess

�

x / guess) / 2

def goodEnough (guess, x) = abs ((guess� guess)� x)

�

0.001f

def sqrtIter (guess, x) =

if (goodEnough (guess, x)) guess

else sqrtIter (improve (guess, x), x)

sqrtIter (1.0, x)

�

The visibility of an identifier extends from its own definition to the

end of the enclosing block, including any nested definitions.
Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.9/60

Exercise:

�

The goodEnough function tests the absolute difference
between the input parameter and the square of the guess.

�

This is not very accurate for square roots of very small
numbers and might lead to divergence for very large
numbers (why?).

�

Design a different sqrtIter function which stops if the change
from one iteration to the next is a small fraction of the
guess. E.g.

�
�
�
���������

	��

��
�

���

Complete:

def sqrtIter (guess : Double, x : Double) = ?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.10/60

Semantics of Function Application

�

One simple rule: A function application f (A) is evaluated by

� replacing the application with the function’s body where

� actual parameters A replace formal parameters of f.

�

This can be formalised as a rewriting of the program itself:

def f (x) = B ; ... f (A)

�

def f (x) = B ; ... [A/x] B

�

Here, [A/x] B stands for B with all occurrences of x replaced
by A.

�

[A/x] B is called a substitution.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.11/60

Rewriting Example:

Consider gcd:

def gcd (a : Int, b : Int) = if (b�� 0) a else gcd (b, a

�

b)

Then gcd (14, 21) evaluates as follows:

gcd (14, 21)

�

if (21�� 0) 14 else gcd (21, 14

�

21)

�

gcd (21, 14)

�

if (14�� 0) 21 else gcd (14, 21

�

14)

��

gcd (14, 7)

�

if (7�� 0) 14 else gcd (7, 14

�

7)

��

gcd (7, 0)

�

if (0�� 0) 7 else gcd (0, 7

�

0)

�

7

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.12/60

Another rewriting example:

Consider factorial:

def factorial (n : Int) = if (n�� 0) 1 else n� factorial (n� 1)

Then factorial (5) rewrites as follows:

factorial (5)

�

if (5�� 0) 1 else 5� factorial (5� 1)

�

5� factorial (5� 1)

�

5� factorial (4)

�

...

�

5� (4� factorial (3))

�

...

�

5� (4� (3� factorial (2)))

�

...

�

5� (4� (3� (2� factorial (1))))

�

...

�

5� (4� (3� (2� (1� factorial (0))))

�

...

�

5� (4� (3� (2� (1� 1))))

�

...

�

120
Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.13/60

Question:

What differences are there between the two rewrite sequences?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.14/60

Tail Recursion

�

Implementation note: If a function calls itself as its last
action, the function’s stack frame can be re-used. This is
called “tail recursion”.

�� Tail-recursive functions are iterative processes.

�

More generally, if the last action of a function is a call to
another (possible the same) function, only a single stack
frame is needed for both functions. Such calls are called
“tail calls”.

Exercise: Design a tail-recursive version of factorial.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.15/60

First-Class Functions

�

Most functional languages treat functions as “first-class
values”.

�

That is, like any other value, a function may be passed as a
parameter or returned as a result.

�

This provides a flexible mechanism for program
composition.

�

Functions which take other functions as parameters or
return them as results are called “higher-order” functions..

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.16/60

Example

�

Sum integers between a and b:

def sumInts (a : Int, b : Int): Double =

if (a

�

b) 0.0 else a

�

sumInts (a

�

1, b);

�

Sum cubes of all integers between a and b:

def cube (a : Int) = a� a� a;

def sumCubes (a : Int, b : Int): Double =

if (a

�

b) 0.0 else cube (a)

�

sumCubes (a

�

1, b);

�

Sum reciprocals between a and b

def sumReciprocals (a : Int, b : Int): Double =

if (a

�

b) 0 else 1.0 / a

�

sumReciprocals (a

�

1, b);

�

These are all special cases of

�
�

���
 for different values of

�

.
Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.17/60

Summation with a higher-order function

�

Can we factor out the common pattern?

�

Define:

def sum (f : (Int)Double, a : Int, b : Int): Double =

if (a

�

b) 0.0 else f (a)

�

sum (f, a

�

1, b);

�

Then we can write:

def sumInts (a : Int, b : Int) = sum (id, a, b)

def sumCubes (a : Int, b : Int) = sum (cube, a, b)

def sumReciprocals (a : Int, b : Int) = sum (reciprocal, a, b)

where
def id (x : Int) = x

def cube (x : Int) = x� x� x

def reciprocal (x : Int) = 1.0 / x

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.18/60

Anonymous functions

�

Parameterisation by functions tends to create many small
functions.

�

Sometimes it is cumbersome to have to define the functions
using def.

�

A shorter notation makes use of anonymous functions,
defined as follows:
(x� : T� , ..., x� : T� E) defines a function which maps its
parameters x� , ..., x� to the result of the expression E
(where E may refer to x� , ..., x�).

�

The parameter types T� may be omitted if they can be
reconstructed “from the context”.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.19/60

�

Anonymous functions are not essential in Scala; an
anonymous function (x� , ..., x� E) can always be
expressed using a def as follows:

�

def f (x� : T� , ..., x� : T�) = E ; f

�

where f is fresh name which is used nowhere else in the
program.

�

We also say, anonymous functions are “syntactic sugar”.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.20/60

Summation with Anonymous Functions

Now we can write shorter:

def sumInts (a : Int, b : Int) = sum ((x

�

x), a, b)

def sumCubes (a : Int, b : Int) = sum ((x

�

x� x� x), a, b)

def sumReciprocals (a : Int, b : Int) = sum ((x

�

1.0 / x), a, b)

Can we do even better?

Hint: a, b appears everywhere and does not seem to take part in

interesting combinations. Can we get rid of it?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.21/60

Currying

Let’s rewrite sum as follows.

def sum (f : (Int)Double) =

�

def sumFun (a : Int, b : Int): Double =

if (a

�

b) 0.0

else f (a)

�

sumFun (a

�

1, b);

sumFun

�
�

sum is now a function which returns another function;

�

Namely, the specialized summing function which applies the
f function and sums up the results.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.22/60

Then we can define:

val sumInts = sum (x

�

x)

val sumCubes = sum (x

�

x� x� x)

val sumReciprocals = sum (x

�

1.0 / x)

Function values can be applied like other functions:

sumReciprocals (1, 1000)

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.23/60

Curried Application

How are function-returning functions applied?
Example:

�

sum (cube) (1, 10)

3025

�

sum (cube) applies sum to cube and returns the
“cube-summing function” (Hence, sum (cube) is equivalent
to sumCubes).

�

This function is then applied to the pair (1, 10).

�

Hence, function application associates to the left:

sum (cube) (1, 10)�� (sum (cube)) (1, 10)

�� val sc = sum (cube) ; sc (1, 10)

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.24/60

Curried Definition

�

The style of function-returning functions is so useful in FP,
that we have special syntax for it.

�

For instance, the next definition of sum is equivalent to the
previous one, but shorter:

def sum (f : (Int, Int)Double) (a; Int, b : Int): Double =

�

if (a

�

b) 0.0

else f (a)

�

sum (f) (a

�

1, b)

�

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.25/60

Generally, a curried function definition

def f (args�) ... (args�) = E

where��� expands to

def f (args�) ... (args��
�) = (def g (args�) = E ; g)

where g is a fresh identifier. Or, shorter:

def f (args�) ... (args��
�) = (args�
�

E)

Performing this step� times yields that

def f (args�) ... (args��
�) (args�) = E

is equivalent to

def f = (args�
�

(args�
�

... (args�
�

E) ...))

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.26/60

�

Again, parentheses around single-name formal parameters
may be dropped.

�

This style of function definition and application is called
currying after its promoter, Haskell B. Curry.

�

Actually, the idea goes back further to Frege and
Schönfinkel, but the name “curried” caught on (maybe
because “schönfinkeled” does not sound so well.)

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.27/60

Exercises:

1. The sum function uses a linear recursion. Can you write a
tail-recursive one by filling in the ??’s?

def sum f (a : Int, b : Int): Double =

�

def iter (a : Int, result : Double): Double =

�

if (??) ??

else iter (??, ??)

�

iter (??, ??)

�

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.28/60

2. Write a function product that computes the product of the
values of functions at points over a given range.

3. Write factorial in terms of product.

4. Can you write an even more general function which
generalizes both sum and product?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.29/60

Part II: Lambda Calculus

�

Lambda Calculus is a foundation for functional programs.

�

It’s an operational semantics, based on term rewriting.

�

Lambda Calculus was developed by Alonzo Church in the
1930’s and 40’s as a theory of computable functions.

�

Lambda calculus is as powerful as Turing machines. That
is, every Turing machine can be expressed as a function in
the calculus and vice versa

�

Church Hypothesis: Every computable algorithm can be
expressed by a function in Lambda calculus.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.30/60

Pure Lambda Calculus

�

Pure Lambda calculus expresses only functions and
function applications.

�

Three term forms:

Names�����
�

Terms

�
�

�
�

����� names

���
�

�

abstractions

���

applications

�

We generally omit parentheses around single-name
function arguments.

�

Function-application is left-associative.

�

The scope of a name extends as far to the right as possible.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.31/60

�

Example:

��
�

��
�

�������
�

���
�

�����

��

�

�

Often, one uses the term variable instead of name.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.32/60

Evaluation of Lambda Terms

Evaluation of lambda terms is by the

�

-reduction rule.

�����
�

�
����	���
��	�� is substitution, which will be explained in detail later.

Example:

���
�
�
���
�
�
���
�
�

���
�

��
�

����

���
�
�
�����
�

���
�
�
���
�
�
�
�

����
�
�
����
�
�
�

����
�
�
�

��

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.33/60

Term Equivalence

Question: Are these terms equivalent?

��
�
� and

��
�
�

What about

��
�
� and

��
�
�

?

Need to distinguish between bound and free names.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.34/60

Free And Bound Names

Definition The free names

��
��

of a term

�

are those names
which occur in

�

at a position where they are not in the scope of
a definition in the same term.

Formally,

��
��

is defined as follows.

��
��
�
���

��
���
�

�
���
��
����

��
���
���
��
�����

�

All names which occur in a term

�

and which are not free in

�

are called bound.

A term without any free variables is called closed.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.35/60

Renaming

�

The spelling of bound names is not significant.

�

We regard terms

�

and

�

which are convertible by
renaming of bound names as equivalent, and write

���
�

This is expressed formally by the following� -renaming rule:

����
�

����
�

��	�����������

Formally,� is the smallest congruence which contains the
equality of rule� .

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.36/60

Substitutions

�

We now have the means to define substitution formally:

��	�����
��	�����
�����

��	����
�

����
�

�
��	����
�

����
�

��	����������
������

��	�����
�
���	���
���	���

�

Substitution affects only the free names of a term, not the
bound ones.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.37/60

Avoiding Name Capture

�

We have to be careful that we do not bind free names of a
substituted expression (this is called name capture).

�

For instance,

��	����
�
�����
�
����

�

We have to� -rename

��
�
� first before applying the

substitution:

��	����
�
����	����
�
� by�

���
�
�

�

In the following, we will always assume that terms are
renamed automatically so as to make all substitutions
well-defined.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.38/60

Normal Forms

Definition: We write�� for reduction in an arbitrary number of
steps. Formally:

����� iff

����
�

�����
���
����
��

Definition: A normal form is a term which cannot be reduced
further.

Exercise: Define:

�
���
���
�

��
�

��
�

�����

�

���
���
�

��
�
�

Can

���

be reduced to a normal form?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.39/60

Combinators

�

Lambda calculus gives one the possibility to define new
functions using

�

abstractions.

�

Question : Is that really necessary for expressiveness, or
could one also do with a fixed set of functions?

�

Answer: (by Haskell Curry) Every closed

�

-definable function
can be expressed as some combination of the combinators

�

and

�

.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.40/60

Combinator Implementation Technique

�

This insight has influenced the implementation of one
functional language (Miranda).

�

The Miranda compiler translates a source program to a
combination of a handful of combinators (

�

,

�

, and a few
others for “optimizations”).

�

A Miranda runtime system then only has to implement the
handful of combinators.

�

Very elegant, but “slow as continental drift”.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.41/60

Confluence

If a term had more than one normal form, we’d have to worry
about an implementation finding “the right one”.
The following important theorem shows that this case cannot
arise.

Theorem: (Church-Rosser) Reduction in

�

-calculus is
confluent: If

����� and

����� , then there exists a term

�
�

such that

�
����� and

�
����� .

Proof: Not easy.

Corollary: Every term can be reduced to at most one normal
form.
Proof: Your turn.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.42/60

Terms Without Normal Forms

�

There are terms which do not have a normal form.

�

Example: Let

�
���
����
�

���

���
�

���

Then

�����
�

���

���
�

���

����
�

���

���
�

���

�
���

�

Terms which cannot be reduced to a normal form are called
divergent.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.43/60

Evaluation Strategies

The existence of terms without normal forms raises the
question of evaluation strategies.

For instance, let

�
���
���
�
� and consider:

���
�

�
�
��

in a single step. But one could also reduce:

���
�

�
�
����
�

�
�
�
���

by always doing the

��� reduction.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.44/60

Complete Evaluation Strategies

An evaluation strategy is a decision procedure which tells us
which rewrite step to choose, given a term where several
reductions are possible.
Question 1: Is there a complete evaluation strategy, in the
following sense:

Whenever a term has a normal form, the reduction
using the strategy will end in that normal form.

?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.45/60

Weak Head Normal Forms

In practice, we are not so much interested in normal forms; only
in terms which are not further reducible “at the top level”.
That is, reduction would stop at a term of the form

��
�

�

even if

�

was still reducible.
These terms are called weak head normal forms or values.
They are characterized by the following grammar.

Values

�����
���
�

�

We now reformulate our question as follows:

Question 2: Is there a (weakly) complete evaluation strategy, in
the following sense:

Whenever a term can be reduced to a value, the
reduction using the strategy will end in that value.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.46/60

Precise Definition of Evaluation Strategy

�

How can we define evaluation strategies formally?

�

Idea: Use reduction contexts.

Definition: A context

�

is a term where exactly one subterm is
replaced by a “hole”, written

��

.

����

denotes the term which results if the hole of context

�

is
filled with term

�

.

�

Examples of contexts:

����
�

��
�

����
�

���

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.47/60

�

Previously, we have admitted reduction anywhere in a term
without explicitly saying so.

�

Let’s formalize this:

Definition: A term

�

reduces at top-level to a term

��

, if

�

and

��

are the left- and right-hand sides of an instance of rule

�

. We
write in this case:

����� .

Definition: A term

�

reduces to a term

�

’, written

���� if
there exists a context

�

and terms

�

,

��

such that

������
��������

�����

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.48/60

�

So much for general reduction.

�

Now, to define an evaluation strategy, we restrict the
possible set of contexts in the definition of� .

�

The restriction can be expressed by giving a grammar
which describes permissible contexts.

�

Such contexts are called reduction contexts and we let the
letter

�

range over them

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.49/60

Call-By-Name

Definition: The call-by-name strategy is given by the following
grammar for reduction-contexts:

����
�����

Definition: A term

�

reduces to a term

�

’ using the
call-by-name strategy, written

��

cbn

��

if there exists a
reduction context

�

and terms

�

,

��

such that

������
��������

�����

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.50/60

Deterministic Reduction Strategies

Definition: A reduction strategy is deterministic if for any term
at most one reduction step is possible.

Proposition: The call-by-name strategy�

cbn is deterministic.

Proof: There is only one way a term can be split into a reduc-

tion context R and a subterm which is reducible at top-level.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.51/60

Exercise: Reduce the term

���

with the call-by-name
strategy, where

�
���
���
�

��
�
�

�
���
���
�
�

�
���
����
�

���

���
�

���

Theorem: (Standardization) Call-by-name reduction is weakly
complete: Whenever

���� then

���

cbn

��

.
Proof: hard.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.52/60

Normal Order Reduction

Question:

�

Modify call-by-name reduction to normal-order reduction,
which always reduces a term to a normal form, if it has one.

�

Which changes to the definition of reduction contexts

�

are
necessary?

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.53/60

�

In practice, call-by-name is rarely used since it leads to
duplicate evaluations of arguments. Example:

���
�

����

����
�
�
���
�
�

����
�
�
���
�
�
����
�
�
���
�
�
�

����
�
�
����
�
�
���
�
�
�

����
�
�
����
�
�
�

����
�
�
�

��
�

Note that the argument

���
�
�
���
�
�
 is evaluated twice.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.54/60

�

A shorter reduction can often be achieved by evaluating
function arguments before they are passed. In our example:

���
�

����

����
�
�
���
�
�

����
�

����

���
�
�

����
�
�
����
�
�
�

����
�
�
�

��

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.55/60

Call-By-Value

�

The call-by-value strategy evaluates function arguments
before applying the function.

�

It is often more efficient than the call-by-name strategy.
However:

Proposition: The call-by-value strategy is not (weakly)
complete.

�

Question: Name a term which can be reduced to a value
following the call-by-name strategy, but not following the
call-by-value strategy.

�

Hence we have a dilemma: One strategy is in practice too
inefficient, the other is incomplete.

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.56/60

First Solution: Call-By-Need Evaluation

� Idea: Rather than re-evaluating arguments repeatedly,
save the result of the first evaluation and use that for
subsequent evaluations.

�

This technique is called memoization.

�

It is used in implementations of lazy functional languages
such as Miranda or Haskell.

�

A formalization of call-by-need is possible, but beyond the
scope of this course. See

A Call-by-Need Lambda Calculus, Zena Ariola,
Matthias Felleisen, John Maraist, Martin Odersky and
Philip Wadler. Proc. ACM Symposium on Principles of
Programming Languages, 1995.

Exercise: What is a good data representation for call-by-need
Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.57/60

Second Solution: Call-By-Value Calculus

�

Rather than tweaking the evaluation strategy to be complete
with respect to a given calculus, we can also change the
calculus so that a given evaluation strategy becomes
complete with respect to it.

�

This has been done by Gordon Plotkin, in the call-by-value
lambda calculus.

�

The terms and values of this calculus are defined as before.
A more concise re-formulation is:

Terms

�
�

�
�

�����
���

Values

�
�����

���
�

�

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.58/60

�

As reduction rule, we have:

�
��

���
�

�
����	���
�

As reduction contexts, we have:

�
����

����
�
����
�

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.59/60

�

Let�� be general reduction of terms with the

�
� rule, and

let�

cbv be

�
� reduction only at the holes of call-by-value

reduction contexts

�
� . Then we have:

Theorem: (Plotkin)�� reduction is confluent.

Theorem: (Plotkin)�

cbv is weakly complete with respect to

�� .

Concurrency: Theory, Languages and Programming – Functional Programming and Lambda Calculus – Session 2 – Oct 30rd, 2002 – (produced on March 4, 2004) – p.60/60

		Part I: Functional Programming

		

		Why Study Functional Programming?

		Square Roots by Newton's Method

		

		

		Language Elements Seen So Far

		Nested Functions

		Exercise:

		Semantics of Function Application

		Rewriting Example:

		Another rewriting example:

		Question:

		Tail Recursion

		First-Class Functions

		Example

		Summation with a higher-order function

		Anonymous functions

		

		Summation with Anonymous Functions

		Currying

		

		Curried Application

		Curried Definition

		

		

		Exercises:

		

		Part II: Lambda Calculus

		Pure Lambda Calculus

		

		Evaluation of Lambda Terms

		Term Equivalence

		Free And Bound Names

		Renaming

		Substitutions

		Avoiding Name Capture

		Normal Forms

		Combinators

		Combinator Implementation Technique

		Confluence

		Terms Without Normal Forms

		Evaluation Strategies

		Complete Evaluation Strategies

		Weak Head Normal Forms

		Precise Definition of Evaluation Strategy

		

		

		Call-By-Name

		Deterministic Reduction Strategies

		

		Normal Order Reduction

		

		

		Call-By-Value

		First Solution: Call-By-Need Evaluation

		Second Solution: Call-By-Value Calculus

		

		

