
Concurrency:
Theory, Languages and Programming

– Equivalences for -Calculus –

Session 13 – January 29, 2003

Uwe Nestmann

EPFL-LAMP

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.1/18

Derivation of Transitions (Repetition)

What is Operational Semantics about?

It provides us with a formal (=mechanizable) way to find out
which computations steps (=transitions) are possible for the
current state of a system.

It provides a compiler with a precise specification of what to do!

It provides the basis for the definition of program equivalences
(and congruences!) like bisimularities.

A tool like the ABC should (=must) be able to:
(1) derive transitions according to the operational semantics,
(2) play the bisimulation game based on this information,
(3) allow us to simulate system behaviors using this information.

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.2/18

Derivation of Transitions: Example

��������������	��
����
�����
�
������
�����
�
���

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.3/18

Towards Bisimulation in -Calculus

�

“standard” definition is based on labeled transitions

�

PROBLEM: infinite branching
due to infinitely many input transitions

� late input transitions

�

PROBLEM: lack of congruence properties!

� when should substitution take place?

� how to keep track of freshness of names?

�

PROBLEM: four (!) different (!!) styles of bisimulation
ground — early — late — open

� which bisimulation is the “best”?

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.4/18

Input Transitions

�����

�

���
����

����
��

��

for all

��	

generates infinitely many transitions
for each enabled input prefix.

�����

�

�
���
������

collapses all of them in one
by not yet instantiating the received variable.
The input is called late (or symbolic).
(The . . . -rule should then take care of substitutions.)

(PRE)�

�

����

replaces the former (TAU), (OUT), and (INP).

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.5/18

Other Transitions ?

Now, we have transition labels

�����
�
��

������
���
������

where

�
	�� and����
 . (Note that there are no more labels of
the form����� as we had in Session 6.)

If we change the rule for input transitions,
then what is the precise effect on the other transitions?

Note that the names

�� in an input label����� arose from an input
binding, and that we still need to substitute them . . .

Let us defined the bound names of a label by:

���������
��	
�

���������
�������
��	
�

�
�

and, of course

�����
��	
�

�

.
Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.6/18

Output Transitions

No input transitions involved.
No change needed, here.

(RES)

�

����
�

�����

���
������

���
������

(OPEN)

�

�
��������

���������
�

�����

�	
��������

����������
�

����
���
�
�

�

�

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.7/18

“Uniform” Transitions

No change required.
Only non-critical access to bound names of transitions . . .

(SUM)

�

����
�

�	�

����
�

(REP)

����

����
�

��

����

�

(ALP)

�

����
�

�

����
�

�����
�

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.8/18

Transitions of Parallel Compositions

Some change & care required.
(PAR) must respect the bound input names.

(PAR)

�

����
�

���

����
���

���������������

(CLOSE)

�
�
���

������
��

�
��������

���������
�

���
�
���

��
�

��������
�������

��
�
���������

(CLOSE) must deal with the proper label and perform the
substitution . . . quite at a quite late stage.

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.9/18

Simulating Input Transitions (I)

Definition: (“standard”)

. . . whenever

���

, if

�
�
���

������
�

then

there is

��

such that

�
�
���

������
�

with

�����

Compare the following terms:

�������
�
	�

��

�
���

�����������

���
�
	�

���

�
���

���������������

�������
�
	�

���

So, this kind of input simulation does not yield a congruence !
Closure under input prefix means closure under substitutions !

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.10/18

Simulating Input Transitions (II)

. . . whenever

���

, if

�
�
���

������
�

then

ground

there is

��

such that

�
�
���

������
�

with

�����

early

for all

�� there is

��

such that

�
�
���

������
�

with

����
��

����������
���

late

there is

��

such that for all

���
�
���

������
�

with

����
��

����������
���

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.11/18

Simulating Input Transitions

Compare again the following terms:

�������
�
	�

��

�
���

�����������

���
�
	�

���

So, neither early nor late input simulation yield congruences !

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.12/18

Open Input Simulation

. . . whenever

���

,

for all� , if��

����
�

then

there is

��

such that�
�

����

�

with

�����

.

Note:

�

Substitution-closure is required before each step.

�

Open simulation provides
substitution-closure “by definition”.

However, it is going a bit too far . . .

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.13/18

Example

Compare the following terms:

�������
�
	�

��

�
���

���������������

�������
�
	�

���

��������

���������������

���
�
	�

���

What happens after the output transition

�������
�������� ?

If we forget that� was freshly generated,
then it might accidentally be confused with�

when open-simulating the next (�) transition.

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.14/18

Simulating Output Transitions

Under open simulation the approach:

. . . whenever

���

,

if

�

���������

����������
�

then

there is

��

such that

�

���������

����������
�

with

�����

.

is too naïve !!

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.15/18

Distinction

Definition:
A distinction

�

is a
finite symmetric ir reflexive relation on names.

A substitution� respects a distinction

�

if

��
�
���� implies������ .

A D-congruence is . . . w.r.t. only those contexts
that do not use the names in

�

as bound names.

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.16/18

Open Bisimilarity

Definition:

�

���

is a distinction

�

is the largest family of symmetric
relations such that if

��
��

and� respects

�

, then

�

if��

����

�

and� is not a bound output, then

there is

��

such that�
�

����

�

with

���
���

.

�

if��

���������

����������
�

, then

there is

��

such that�
�

���������
����������

�

with

���
����

where

�������
�
�
�������

�
�
����

.

The weak version is defined as usual.
Both the strong and weak bisimilarities are

�

-congruences.

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.17/18

Relation to the ABC

The bisimulation relation generated by the ABC
are open bisimulations.

Each element of such a relation is a triple,
consisting of two terms and a distinction . . .

Some more interesting examples next week . . .

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.18/18

	 Derivation of Transitions (Repetition)

	 Derivation of Transitions: Example
	 Towards Bisimulation in $pi $-Calculus
	 Input Transitions
	 Other Transitions ?
	 Output Transitions
	 ``Uniform'' Transitions
	 Transitions of Parallel Compositions
	 Simulating Input Transitions (I)
	 Simulating Input Transitions (II)

	 Simulating Input Transitions
	 Open Input Simulation
	 Example
	 Simulating Output Transitions
	 Distinction
	 Open Bisimilarity
	 Relation to the ABC

