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Derivation of Transitions (Repetition)

What is Operational Semantics about?

It provides us with a formal (=mechanizable) way to find out
which computations steps (=transitions) are possible for the
current state of a system.

It provides a compiler with a precise specification of what to do!

It provides the basis for the definition of program equivalences
(and congruences!) like bisimularities.

A tool like the ABC should (=must) be able to:
(1) derive transitions according to the operational semantics,
(2) play the bisimulation game based on this information,
(3) allow us to simulate system behaviors using this information.
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Derivation of Transitions: Example
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Towards Bisimulation in -Calculus

�

“standard” definition is based on labeled transitions

�

PROBLEM: infinite branching
due to infinitely many input transitions

� late input transitions

�

PROBLEM: lack of congruence properties!

� when should substitution take place?

� how to keep track of freshness of names?

�

PROBLEM: four (!) different (!!) styles of bisimulation
ground — early — late — open

� which bisimulation is the “best”?
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Input Transitions

�����

�

���
����

����
��

��

for all

��	

generates infinitely many transitions
for each enabled input prefix.
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collapses all of them in one
by not yet instantiating the received variable.
The input is called late (or symbolic).
(The . . . -rule should then take care of substitutions.)

(PRE)�

�
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replaces the former (TAU), (OUT), and (INP).
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Other Transitions ?

Now, we have transition labels
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 . (Note that there are no more labels of
the form����� as we had in Session 6.)

If we change the rule for input transitions,
then what is the precise effect on the other transitions?

Note that the names

�� in an input label����� arose from an input
binding, and that we still need to substitute them . . .

Let us defined the bound names of a label by:
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Output Transitions

No input transitions involved.
No change needed, here.
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“Uniform” Transitions

No change required.
Only non-critical access to bound names of transitions . . .
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Transitions of Parallel Compositions

Some change & care required.
(PAR) must respect the bound input names.

(PAR)
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(CLOSE)
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(CLOSE) must deal with the proper label and perform the
substitution . . . quite at a quite late stage.
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Simulating Input Transitions (I)

Definition: (“standard”)
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Compare the following terms:

�������
�
	�

��

�
���

�����������

���
�
	�

���

�
���

���������������

�������
�
	�

���

So, this kind of input simulation does not yield a congruence !
Closure under input prefix means closure under substitutions !
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Simulating Input Transitions (II)
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Simulating Input Transitions

Compare again the following terms:
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So, neither early nor late input simulation yield congruences !
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Open Input Simulation

. . . whenever
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Note:

�

Substitution-closure is required before each step.

�

Open simulation provides
substitution-closure “by definition”.

However, it is going a bit too far . . .
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Example

Compare the following terms:
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What happens after the output transition


�������
�������� ?

If we forget that� was freshly generated,
then it might accidentally be confused with�

when open-simulating the next (� ) transition.
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Simulating Output Transitions

Under open simulation the approach:
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is too naïve !!

Concurrency:Theory, Languages and Programming – Equivalences for� -Calculus – Session 13 – January 29, 2003 – (produced on March 4, 2004, 18:38) – p.15/18



Distinction

Definition:
A distinction

�

is a
finite symmetric ir reflexive relation on names.

A substitution� respects a distinction
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A D-congruence is . . . w.r.t. only those contexts
that do not use the names in

�

as bound names.
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Open Bisimilarity

Definition:
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The weak version is defined as usual.
Both the strong and weak bisimilarities are

�

-congruences.
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Relation to the ABC

The bisimulation relation generated by the ABC
are open bisimulations.

Each element of such a relation is a triple,
consisting of two terms and a distinction . . .

Some more interesting examples next week . . .
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