Concurrency: Theory, Languages and Programming

Equivalences for CCS –

Session 11 – January 15, 2003

Uwe Nestmann

EPFL-LAMP

Bisimulation on CCS

check out Session 4, again add 1+1...

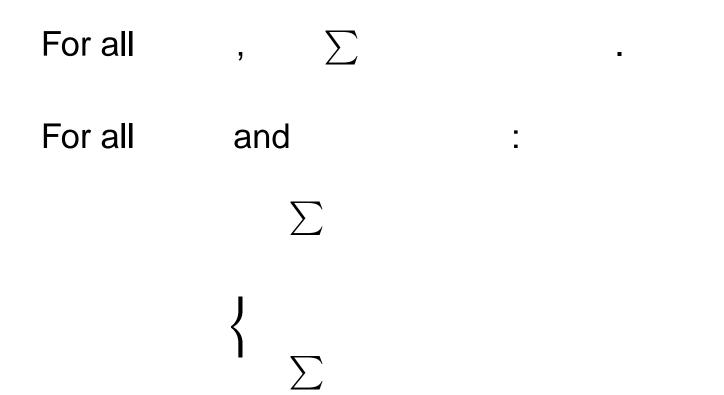
"Algebraic" Properties (I)

M

- - -

Why algebraic?

"Algebraic" Properties (II)



"Algebraic" Properties (III)

For all , and : \sum_{and}

Expansion Law! (also called: Interleaving)
Compare to the notions of standard forms in Milner's book: every process term can be transformed into a form that matches the left-hand side of the above equation.

Process Contexts

<u>Definition:</u>A process context following syntax:

is (precisely) defined by the

M M

The **elementary contexts** are

M, M

denotes the result of filling the hole of with process

Process congruence

```
<u>Definition:</u>(Process congruence)
Let be an equivalence relation over
```

```
Then is said to be a process congruence, if for all contexts , implies .
```

Process congruence (II)

Proposition:

An arbitrary equivalence relation is a process congruence if, and only if, it is preserved by all *elementary contexts*; i.e., if , then

$$M \hspace{1cm} M \hspace{1cm} M \hspace{1cm} M$$

Note:

For proving that an equivalence relation is a congruence, the elementary contexts suffice.

Congruence Properties

Proposition:

Bisimilarity is a process congruence, i.e., ...

Towards Observation Equivalence

Let us assume that our LTSs may dispose of a single distinguished *internal action* symbol, say: , as is the case for our language of concurrent process expressions. Then:

"Different internal behavior" should "not count"!

Definition:(observations / weak actions)

1.

2.

Weak Simulation

Definition:

is a weak simulation iff, whenever

if then there is

such that and

if then there is

such that and

weakly simulates

if there is a weak simulation such that

Example:

Prove that weakly simulates

Prove that weakly simulates

Weak Bisimulation

<u>Definition</u>: (* straightforward / should be no surprise *) A binary relation is *a* **weak bisimulation** if both and its converse are weak simulations.

and are weakly bisimilar, weakly equivalent, or observation equivalent, written , if there exists a weak bisimulation with .

Alternatively:

[] is weak bisimulation

Proposition:

- is itself a weak bisimulation.
- 2. is an equivalence relation.

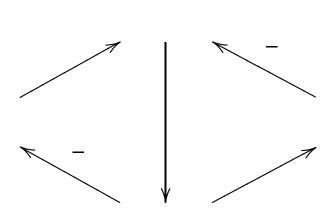
Strong vs Weak

- 1. every strong simulation is also a weak one
- 2. implies

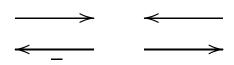
Examples?

Proof?

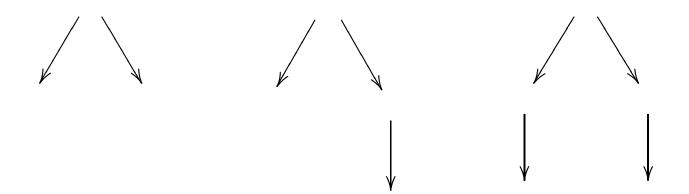
Example



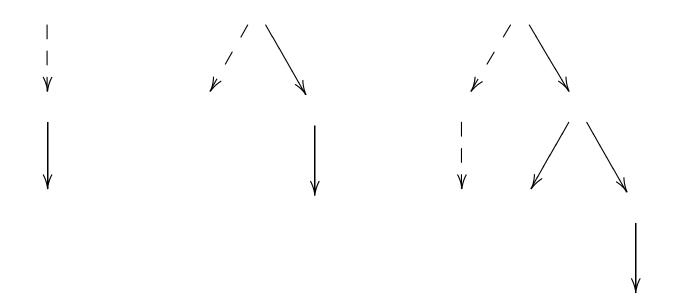
Prove that



Some Inequivalences



Some Equivalences



Some Equations

Theorem:

Let be any process.

Let M any summations. Then:

1.

2. *M*

M

3. *M*

M

Congruence Properties

Proposition:

Weak bisimilarity is a process congruence, i.e., ...

Example:

Observe

Let .

Compare

Two-Place Buffers

Buff	1-place buffer containing , where in out
Buff	in Buff
Buff	out Buff
Buff	2-place buffer containing — SPECIFICATION
Buff	in Buff
Buff	out Buff in Buff
Buff	out Buff
Bluff	2-place buffer containing — IMPLEMENTATION
Bluff	x Buff in x Buff x out

prove that Buff

Bluff

Unique Solution of Equations

<u>Theorem:</u>

Let be a (possibly infinite) sequence of process variables. In the equations

assume that . Then, up to , there is a unique sequence of processes which satisfies the equations.