o .

Concurrency:
Theory, Languages and Programming

— Equivalences for Concurrency —
Session 10 — January 8, 2003

Uwe Nestmann

EPFL-LAMP

Repetition of Algebraic Notions
- -

relations/functions
composition
comparison, containment

preorder/equivalence
reflexivity
symmetry
transitivity
kernel of a (reflexive) preorder
comparison, containment vs fine/coarse

congruence
by definition?

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.2/3!

Automata
A

n automaton
over an action alphabet Act:

a set . the states

a state . the start state

a subset . the accepting states

a subset Act . the transitions
A transition IS also written

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.3/3!

Example Automaton
L

et Act be
Let be defined as

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.4/3!

Automata (l1)
Hn automaton is
finite-state , if Is finite, and
deterministic if for each pair Act

there Is exactly one transition .
(Note the similarity to a function Act)

Question: Would the formulation “at most one transition ”
yield less deterministic automata?

Note: “Complete” an automaton?

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.5/3!

Behavior: Language of an Automaton
" -

et be an automaton over Act.
Let be a string over Act. Then:

IS said to accept , if there is a path In
— from to some accepting state —
whose arcs are labeled successively

The language of , denoted by
IS the set of strings accepted by

denotes the empty string.

Fact. The language of any finite-state automaton is regular.

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.6/3!

Regular Sets

-

Definition: A set of strings over Act is regular
If it can be built from

(* a mathematical model *)

the empty set and the singleton sets (Act),

using the operations of
union (),
concatenation (), and
iteration ().

mregular sets, we sometimes write for and for . J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.7/3!

Regular Expressions

K

Definition: The set of regular expressions over Act is
generated by the following grammar:

-

syntax to indicate the elements of the mathematical model *)

where Act.
In regular expressions, we often write for

regular expressions | regular sets

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.8/3!

“Denotational Semantics”

RegEXxps RegSets

In the image of the semantics function
allof , ,and , are operators on sets so they entall the

calculation of the actual set that they represent
compare to Arithmetic Expressions and Natural Numbers

L note that is not surjective ... why? J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.9/3!

Some Laws on Regular Expressions

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.10/3:

Be Careful ...
N o

ote:
The regular set means “no path”. But:

The regular expression means “empty path”.

As an example, compare with

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.11/3:!

Arden’s rule
ﬁ

heorem:
For any sets of strings and , the equation

has

as a solution .
Moreover, this solution is unique if

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.12/3:

Example Automaton

-

Determine the language of the previous automaton
as the regular expression describing
the strings accepted in the initial state.

=

Write down a set of equations,
one equation for each state.

Solve the set of equations ...

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.13/3:

Determinism / Nondeterminism

-

Analyze the two automata of § 2.4 of [Mil99].

=

Messagel.
Language equivalence is blind for nondeterminism!

In fact, every nondeterministic automaton can be converted into
a determinstic one that accepts the same language.

MessageZ2:
Language equivalence is blind for deadlocks!

Example?

Message3 (less important):
E;mguage equivalence requires accepting states. J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.14/3:

Labeled Transition Systems

-~

Definition:
An LTS over an action alphabet Act:

=

a set of states

a ternary transition relation Act
A transition IS also written
If we call a derivative of

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.15/3:

Equivalence on LTS ?

o .

Example: Compare and In

Induce simulation of paths
Lhrough step-by-step simulation of actions ... J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.16/3:

(Strong) Simulation on LTS
-

Definition: (learn it by heart!)

Let be an LTS.
1. Let be a binary relation over
IS a (strong) simulation over If, whenever
If then there is such that and

2. (strongly) simulates , written ,
If there is a (strong) simulation such that

The relation is sometimes called similarity.

.

-

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.17/3:

Properties of Simulations
" o

emma:
If and are simulations, then

IS also a simulation.
IS also a simulation ?
IS also a simulation ?

Definition: Let be a LTS.

U IS simulation over

Lemma:

IS the largest simulation over
IS a reflexive preorder over
@any simulation a preorder? J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.18/3:

Working with Simulation

—

What do we do with simulations?

exhibiting a simulation:
“guessing” a relation that contains

checking a simulation:
check that a given relation is in fact a simulation.

Fortunately, clever people developed algorithms and respective
tools (CWB, ABC) that are good at “guessing” simulations.

In fact, they generate relations algorithmically that—by
construction—fulfil the property of being a simulation.

Results on (semi-)decidability are very important for such tools.

- -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.19/3:

Home-Working with Simulation

=

Example: Find all non-trivial simulations in

How many are there ?

Trivial pairs are any pairs with elements from
(because there are no transitions),
as well as any identity on

Trivial simulations are those that either

(0) are empty, or

(1) contain only trivial pairs, or

(2) contain at least one trivial pair that is not reachable from a
E)ntained non-trivial one. J

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.20/3:

Towards Equivalence

o .

Simulation is only a preorder,
thus it allows us to distinguish states.

We want instead an equivalence,
which would allow us to equate states.

The mathematical way: just take the “kernel”
If and

However, there are two different natural candidates !
mutual simulation
bisimulation

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.21/3:!

Mutual Simulation: Back and Forth
-

Definition:
Let be a LTS. Let

=

and are mutually similar , written
If there is a pair of simulations and
with (i.e., with and).

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.22/3:

Example: Mut. Sim. vs Lang. Equiv.
- -
SN N |

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.23/3:

Mutual Simulation (Il)

Proposition:

IS an equivalence relation.

Proof?

Typical research-craftsmen work . ..

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.24/3:

(Strong) Bisimulation
o o

efinition: (learn it by heart!)
A binary relation over Is
a (strong) bisimulation over the LTS

If both and its converse are (strong) simulations.

and are (strongly) bisimilar , written ,
If there is a (strong) bisimulation such that

Alternatively:

U IS (strong) bisimulation over T

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.25/3:

(Strong) Bisimulation (l1)

Proposition:

IS (itself) a (strong) bisimulation.
IS an equivalence relation.

Proof?

Again, typical research-craftsmen work . ..

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.26/3:

Example

o .

Prove
Write out ...

Minimization ?!

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.27/3:

Example: Mutual vs Bl

RN |
| A VRN

PERN
/N RN

| | N

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.28/3:

Isomorphismon LTS

o .

efinition:
Let be two LTS over Act for

and are isomorph(ic) ,

written ,
If there is a bijection on between and
that preserves |, l.e., with

Iff

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.29/3:

Isomorphism on LTS (lI)

Proposition:

IS an equivalence relation
(on the domain of LTSS).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and
transitivity . ..

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.30/3:

Isomorphism vs Bisimulation
.

‘Problem™
Isomorphism compares two transition systems;

Bisimulation (at least as we have defined it) compares two
states.

=

Redefine to be a bisimulation
If and are simulations on their respective domains, i.e.,

Redefine to the whole domain of LTSs.

Be careful with the interpretation of reflexivity, symmetry, and
transitivity . ..

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.31/3:!

Isomorphism vs Bisimulation

1. reachability

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.32/3:

Isomorphism vs Bisimulation

2. copying

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.33/3:

Isomorphism vs Bisimulation

-

3. recursion/unfolding

=

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.34/3:

Which is the Best Equivalence ?
i -

anguage equivalence
mutual simulatity
bisimilarity
Isomorphism

identity

To be remembered:
What are the intuitive distinguishing aspects
between all of these notions of equivalence? (Exam...)

o -

Concurrency:Theory, Languages and Programming — Equivalences for Concurrency — Session 10 — January 8, 2003 — (produced on March 4, 2004, 18:38) — p.35/3:

	Repetition of Algebraic Notions
	 Automata
	 Example Automaton
	 Automata (II)

	 Behavior: emph {Language} of an Automaton
	 Regular Sets
	 Regular Expressions
	 ``Denotational Semantics''
	 Some Laws on Regular Expressions
	 Be Careful etc
	 Arden's rule
	 Example Automaton
	 Determinism / Nondeterminism
	Labeled Transition Systems
	 Equivalence on LTS ?
	 (Strong)
Simulation on LTS
	 Properties of Simulations
	 Working with Simulation
	 	extcolor {red}{Home-}	extcolor {blue}{Working with Simulation}
	 Towards Equivalence
	Mutual Simulation: Back and Forth
	 Example: Mut. Sim. vs Lang. Equiv.
	Mutual Simulation (II)
	(Strong)
Bisimulation
	(Strong)
Bisimulation (II)
	 Example
	 Example: Mutual vs Bi
	 Isomorphism on LTS
	 Isomorphism on LTS (II)

	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Isomorphism vs Bisimulation
	 Which is the Best Equivalence ?

