
Concurrency:
Theory, Languages and Programming

– Equivalences for Concurrency –

Session 10 – January 8, 2003

Uwe Nestmann

EPFL-LAMP

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.1/35



Repetition of Algebraic Notions

relations/functions

�

composition

�

comparison, containment

preorder/equivalence

�

reflexivity

�

symmetry

�

transitivity

�

kernel of a (reflexive) preorder

�

comparison, containment vs fine/coarse

congruence

�

by definition?

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.2/35



Automata

An automaton

��������
�
�

�	

over an action alphabet Act:

�

a set

��
��������



: the states

�

a state���� : the start state

�

a subset

���

: the accepting states

�

a subset

����� Act��	 : the transitions

A transition

������
�	�� is also written�
�
����

�

.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.3/35



Example Automaton

Let Act be



��
�
��




.
Let

�

be defined as

�
�����������


�

���

��
�


����
�
���

	
�

��������
	
�

��������
	
�
��������
	
�

��������
	
�

����
�
���

	
�
��������
	
�

��������
	
�

����
�
���

	
�
��������
	
�

��������
	
�

����
�
���

	
�



	

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.4/35



Automata (II)

An automaton

�

is

�

finite-state , if

�

is finite, and

�

deterministic if for each pair

����
	��� Act

there is exactly one transition�
�
����

�

.
(Note the similarity to a function

�� Act�� .)

Question: Would the formulation “at most one transition ”
yield less deterministic automata?

Note: “Complete” an automaton?

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.5/35



Behavior: Language of an Automaton

Let

�

be an automaton over Act.
Let��������� be a string over Act. Then:

��

is said to accept� , if there is a path in

�

— from�� to some accepting state —
whose arcs are labeled successively������� .

�

The language of

�

, denoted by

��

,
is the set of strings accepted by

�

.

� denotes the empty string.

Fact: The language

��

of any finite-state automaton

�

is regular.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.6/35



Regular Sets

(* a mathematical model *)

Definition: A set of strings over Act is regular
if it can be built from

�

the empty set

�

and the singleton sets


�
 (

��� Act),

�

using the operations of

� union (

�

),

� concatenation (� ), and

� iteration (

�

).

�����
��	
�
�����
�����������


��
��	
�
�
�������������	����

In regular sets, we sometimes write� for


�
 and� for



�



.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.7/35



Regular Expressions

(* syntax to indicate the elements of the mathematical model *)

Definition: The set of regular expressions over Act is
generated by the following grammar:

�����
�
��

�
�
�����
�
�
��
�
��

where�� Act.
In regular expressions, we often write�� for��� . . .

regular expressions regular sets

�
���	� ,�����
���
�
�



����
��
�
�



Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.8/35



“Denotational Semantics”

RegExps

�

RegSets

��
�

��
��	
�
�


�����
��	
�
�


���������
��	
��������������

���������
��	
��������������

������
��	
�������

�

in the image of the semantics function

����

,
all of

�

,� , and

�

, are operators on sets so they entail the
calculation of the actual set that they represent

�

compare to Arithmetic Expressions and Natural Numbers

�

note that

����

is not surjective . . . why?

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.9/35



Some Laws on Regular Expressions

������	�������������	
�
����

�
�

���
������	���������������

�
��
������	������������

���������	��������	����

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.10/35



Be Careful . . .

Note:
The regular set

�

means “no path”. But:
The regular expression� means “empty path”.

���
�


As an example, compare


��
�
�
 with


��
�
�

.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.11/35



Arden’s rule

Theorem:
For any sets of strings

�

and

�

, the equation

������� has

������

as a solution .
Moreover, this solution is unique if�

��� .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.12/35



Example Automaton

Determine the language of the previous automaton
as the regular expression describing
the strings accepted in the initial state.

Write down a set of equations,
one equation for each state.

Solve the set of equations . . .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.13/35



Determinism / Nondeterminism

Analyze the two automata of § 2.4 of [Mil99].

Message1:
Language equivalence is blind for nondeterminism!

In fact, every nondeterministic automaton can be converted into
a determinstic one that accepts the same language.

Message2:
Language equivalence is blind for deadlocks!

Example?

Message3 (less important):
Language equivalence requires accepting states.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.14/35



Labeled Transition Systems

Definition:
An LTS

�����
�	

over an action alphabet Act:

�

a set of states

��
��������



�

a ternary transition relation

����� Act��	

A transition

������
�	�� is also written�
�
����

�

.

If�
��
���������

��
������ we call�� a derivative of� .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.15/35



Equivalence on LTS ?

Example: Compare�� and�� in


�
�������
	
�

�
���
�
���

	
�

�
�������
	
�
��������
	
�

�������
�
�

	
�

����
�
���

	
�

���������
	


Induce simulation of paths
through step-by-step simulation of actions . . .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.16/35



(Strong) Simulation on LTS

Definition: (learn it by heart!)
Let

��
�

�	

be an LTS.

1. Let

�

be a binary relation over

�

.

�

is a (strong) simulation over

��
�

�	

if, whenever�
�� ,

if�
�
����

�

then there is���� such that�
�
����

�

and�
���� .

2.� (strongly) simulates� , written��� ,
if there is a (strong) simulation

�

such that�
�� .

The relation

�

is sometimes called similarity.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.17/35



Properties of Simulations

Lemma:
If

�� and

�
� are simulations, then

������ is also a simulation.

������ is also a simulation ?

����� is also a simulation ?

Definition: Let

��
�

�	

be a LTS.

�
��	
�
�
� is simulation over

��
�

�	


Lemma:

��

is the largest simulation over

��
�

�	

.

��

is a reflexive preorder over

��� .

Is any simulation a preorder?
Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.18/35



Working with Simulation

What do we do with simulations?

�

exhibiting a simulation:
“guessing” a relation

�

that contains

�
���
	

�

checking a simulation:
check that a given relation

�

is in fact a simulation.

Fortunately, clever people developed algorithms and respective
tools (CWB, ABC) that are good at “guessing” simulations.

In fact, they generate relations algorithmically that—by
construction—fulfil the property of being a simulation.

Results on (semi-)decidability are very important for such tools.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.19/35



Home-Working with Simulation

Example: Find all non-trivial simulations in


��
�

�
�

�	
�

��
���

�	
�

��
�

�
�

�	
�

��
�

�
�

�	
�

��
���

�	
�

��
���

�	


How many are there ?

Trivial pairs are any pairs with elements from


�
�

�
�

�
�

�
�

�
�

�


(because there are no transitions),
as well as any identity on


�
�

�
�

�


.

Trivial simulations are those that either
(0) are empty, or
(1) contain only trivial pairs, or
(2) contain at least one trivial pair that is not reachable from a
contained non-trivial one.

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.20/35



Towards Equivalence

Simulation is only a preorder,
thus it allows us to distinguish states.

We want instead an equivalence,
which would allow us to equate states.

The mathematical way: just take the “kernel”

��� if��� and���

However, there are two different natural candidates !

�

mutual simulation

�

bisimulation

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.21/35



Mutual Simulation: Back and Forth

Definition:
Let

��
�

�	

be a LTS. Let



���

��

.

� and� are mutually similar , written��� ,
if there is a pair

����
�
�
	

of simulations

�� and

�
�

with�
������ (i.e., with�
��� and���� ).

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.22/35



Example: Mut. Sim. vs Lang. Equiv.

�
�

��~~
~~

~~
~

�

��

�

��
@@

@@
@@

@

�
�

��

��
�

����
�

�

��~~
~~

~~
~�

��
@@

@@
@@

@

�
�

��

�
�

����
�

�

���
�

��~~
~~

~~
~

�

��
@@

@@
@@

@

��
�

�

��~~
~~

~~
~

�

��

�

��
@@

@@
@@

@

�
�

��

��
�

����
�

�

��~~
~~

~~
~�

��
@@

@@
@@

@

�
�

��

�
�

����
�

�

���
�

��~~
~~

~~
~

�

��
@@

@@
@@

@

��

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.23/35



Mutual Simulation (II)

Proposition:

��

is an equivalence relation.

Proof?

Typical research-craftsmen work . . .

���������	�������	
������

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.24/35



(Strong) Bisimulation

Definition: (learn it by heart!)
A binary relation

�

over

�

is
a (strong) bisimulation over the LTS

��
�

�	

if both

�

and its converse

��� are (strong) simulations.

� and� are (strongly) bisimilar , written��� ,
if there is a (strong) bisimulation

�

such that�
�� .

Alternatively:

�
��	
�
�
� is (strong) bisimulation over

��
�

	


Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.25/35



(Strong) Bisimulation (II)

Proposition:

�� is (itself) a (strong) bisimulation.

�� is an equivalence relation.

Proof?

Again, typical research-craftsmen work . . .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.26/35



Example


��
���

�	
�

��
���

�	
�

��
���

�	
�

��
�

�
�

�	
�

��
���

�	
�

��
�

�
�

�	
�
��
���

�	
�

��
���

�	
�

��
�

�
�

�	
�

��
���

�	
�
��
���

�	
�

��
���

�	
�

��
�

�
�

�	


Prove

������� .

Write out� . . .

Minimization ?!

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.27/35



Example: Mutual vs Bi

�
�

��~~
~~

~~
~

�

��

�

��
@@

@@
@@

@

�
�

��

��
�

����
�

�

��~~
~~

~~
~�

��
@@

@@
@@

@

�
�

��

�
�

����
�

�

��~~
~~

~~
~

�

��

�

��
@@

@@
@@

@

�
�

��

�
�

��~~
~~

~~
~

�

��
@@

@@
@@

@

�
�

����
�

�

���
�

��~~
~~

~~
~

�

��
@@

@@
@@

@

��
�

�

��~~
~~

~~
~�

��
@@

@@
@@

@

�
�

��

�

��
@@

@@
@@

@

�
�

��~~
~~

~~
~

�

�����

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.28/35



Isomorphism on LTS

Definition:
Let

��
��
�
�
	

be two LTS over Act for

��
�
�

�


.

����
��	 and

��
��
�
�
	

are isomorph(ic) ,
written

����
��	������
�
�
	

,
if there is a bijection

�

on between

�� and

�
�

that preserves

�

, i.e.,

������� with

�
�
����

�

iff

���	
�
����

���	 .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.29/35



Isomorphism on LTS (II)

Proposition:

��� is an equivalence relation
(on the domain of LTSs).

Proof?

Be careful with the interpretation of reflexivity, symmetry, and
transitivity . . .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.30/35



Isomorphism vs Bisimulation

“Problem”:
Isomorphism compares two transition systems;
Bisimulation (at least as we have defined it) compares two
states.

Redefine

������� to be a bisimulation
if

�

and

��� are simulations on their respective domains, i.e.,

��������� .

Redefine� to the whole domain of LTSs.
Be careful with the interpretation of reflexivity, symmetry, and
transitivity . . .

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.31/35



Isomorphism vs Bisimulation

1. reachability

����
��	��
�
�
���

�
���

�
�



�


��������
�
�

	
	
��
��
�
�
	��
�
�
���

�
�



�


��������
�
�

	
	

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.32/35



Isomorphism vs Bisimulation

2. copying

����
��	��
�
�
���

�
���

�
�



�

��������
�
�

	
�

�����
�
��

�
�

	
�

��������
�
�

	
	
��
��
�
�
	��
�
�
���

�
���

�
���

�
���

��
���

��
���

��
�



�

��������
�
�

	
�

�����
�
��

�
�

	
�

��������
�
�

	
�
���
�����

��
�

	
�

���
�

��
�
��

��
�

	
�

���
�

�����
��
�

	
	

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.33/35



Isomorphism vs Bisimulation

3. recursion/unfolding

����
��	��
�
�
�


����
�

��������
���
�

	
����
	
��
��
�
�
	��
�
�
�



�


���
�����

�
�

	
	

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.34/35



Which is the Best Equivalence ?

language equivalence
mutual simulatity
bisimilarity
isomorphism
identity

�������

To be remembered:
What are the intuitive distinguishing aspects
between all of these notions of equivalence? (� Exam . . . )

Concurrency:Theory, Languages and Programming – Equivalences for Concurrency – Session 10 – January 8, 2003 – (produced on March 4, 2004, 18:38) – p.35/35


	Repetition of Algebraic Notions
	 Automata 
	 Example Automaton 
	 Automata (II)

	 Behavior: emph {Language} of an Automaton 
	 Regular Sets 
	 Regular Expressions 
	 ``Denotational Semantics'' 
	 Some Laws on Regular Expressions 
	 Be Careful etc 
	 Arden's rule 
	 Example Automaton 
	 Determinism / Nondeterminism 
	Labeled Transition Systems
	 Equivalence on LTS ? 
	 (Strong)
Simulation on LTS 
	 Properties of Simulations 
	 Working with Simulation 
	 	extcolor {red}{Home-}	extcolor {blue}{Working with Simulation} 
	 Towards Equivalence 
	Mutual Simulation: Back and Forth 
	 Example: Mut. Sim. vs Lang. Equiv. 
	Mutual Simulation (II)
	(Strong)
Bisimulation 
	(Strong)
Bisimulation (II)
	 Example 
	 Example: Mutual vs Bi 
	 Isomorphism on LTS 
	 Isomorphism on LTS (II)

	 Isomorphism vs Bisimulation 
	 Isomorphism vs Bisimulation 
	 Isomorphism vs Bisimulation 
	 Isomorphism vs Bisimulation 
	 Which is the Best Equivalence ? 

