
Martin Odersky, LAMP/DI 1

Part VI : Type Analysis

• Type Rules

• Attributed Grammars

• Attributes

• The full specification of the context-dependent syntax of JO

• How to get from a specification to a compiler

Martin Odersky, LAMP/DI 2

Type Rules

• Identifier declaration is not the only thing to be checked in a
compiler.

• In J0, as in most programming languages, expressions have types.

• We have to check that the types make sense.

• Examples:

– The operands of + need to be integers.

– The operands of == need to be of the same type. (int, int is OK,
so is string[], string[] but int, string is not.)

– The number of arguments passed to a function must match the
number of parameters of this function.

– Indexing x[n] is only legal for variables x of array type.

– etc.

• How are type rules specified?

Martin Odersky, LAMP/DI 3

Attributed Grammars

• We augment our context free grammars with attributes and attribution
rules.

• Every symbol can now be associated with attributes.

• Every production can now be associated with attribution rules which
relate the attributes of the symbols in the production.

• Example:

E(t) = Operation Add E(t1) E(t2) t1 = t2 = int, t = int
 | Operation Eq E(t1) E(t2) t1 = t2, t = int
 | Ident (name) sym = lookup(name), t = sym.type
 | NumLit (value) t = int

Martin Odersky, LAMP/DI 4

Attributed Grammars (2)

• An attribution is an assignment of all attributes in a syntax tree
that satisfy all attribution rules.

• Example : 1 + (x == y)

Operation (t = int)

Add

NumLit (value = 1,
 t = int)

Operation (t = int)

Eq

Ident (name ="x",
 t = string[])

Ident (name ="y",
 t = string[])

Martin Odersky, LAMP/DI 5

Attributed Grammars (3)

• A program is legal, if

– it is a sentence in the language given by the context-free
grammar, and

– there is an attribution for its structure tree.

• A language's full characterisation is hence given by its context-
free syntax and its context-dependent syntax.

• Nothing is yet said about the meaning of a program, though (this is
also called its semantics).

Martin Odersky, LAMP/DI 6

Attributes

• Typical attributes are:

– The type of an expression

– The symbol produced by a declaration

– The symbol table (or: scope) produced by a set of declarations

• Symbol tables are often represented as a global variable rather
than a set of attributes.

• This is the difference between concept and pragmatics.

• It's important to make sure that pragmatics don't destroy
concepts - symbol tables can be regarded as an attribute, we just
choose a more efficient centralised representation.

Martin Odersky, LAMP/DI 7

The Full Specification of the Context-
Dependent Syntax of JO

P = ModDecl ident {D} "create a new outermost scope "

D = VD | FD

VD = VarDecl T(t) name "create a new symbol in current scope
 with given name and type t.

FD = FunDecl RT(t) name {VD} S "process parameters {VD} in a nested
 scope, create a new symbol in current
 scope with given name and a function
 type which refers to parameters and
 resulttype t.

T(t) = int
| string
| T(t1) []

RT(t) = T(t1)
| void

Martin Odersky, LAMP/DI 8

The Full Specification of the Context-
Dependent Syntax of JO (2)

S = VD
| FunCall Ident(name) Es(formal)
| Assignment E(t1) E(t2)
| Block {S}

| IfStmt E(t) S [S]
| WhileStmt E(t) S
| ReturnStmt E(t)

E(t) = Ident(name)

| FunCall Ident(name) Es(formal)

| Subscript E(t1) E(t2)

| NumLit int
| StrLit String
| Operation UnOp E(t1)
| Operation IntOp E(t1) E(t2)
| Operation EqOp E(t1) E(t2)
| NewArray T(t1) E(t2)

Martin Odersky, LAMP/DI 9

The Full Specification of the Context-
Dependent Syntax of JO (3)

Es(formal) =
| E(t), Es(formal1)

UnOp = Neg | Not
EqOp = Eq | Ne
IntOp = And | Or | Add | Sub | Mul |

 Div | Mod | Lt | Gt | Le | Ge

Martin Odersky, LAMP/DI 10

How to get from a Specification to a Compiler

• Instead of guessing attributes and checking that they satisfy the
attribution rules, we have to compute them.

• Attributes are usually computed from the values of other
attributes.

• Important: Attributes should be assigned only once!

• Attributes can be distinguished by how they ``flow'' through the
structure tree.

– Some flow up the tree - these are synthesised attributes.

– Some flow down the tree - these are inherited attributes.

• In a compiler, synthesised attributes are represented as return
types (or, alternatively: output parameters in C/C++) of the tree
visitors.

• Inherited attributes are represented as (input) parameters to the
tree visitors.

Martin Odersky, LAMP/DI 11

Example

Operation (t = int, s = ...)

Add

NumLit (value = 1,
 t = int,

s = ...)

Operation (t = int, s = ...)

Eq

Ident (name ="x",
 t = string[]
 s = ...)

Ident (name ="y",
 t = string[]
 s = ...)

- s is inherited
- t is synthesized
- name, value are intrinsic

Martin Odersky, LAMP/DI 12

Representing Attributes

• Some attributes are required to be present in later phases of
thecompiler -- they are persistent.

• Other attributes are required only for type checking -- they are
transient.

• Persistent attributes can be stored as additional fields in the
abstract syntax tree.

• Transient attributes are parameters and results of visitor methods.

– Synthesized, transient = visitor results

– Inherited, transient = visitor parameters.

• Some attributes can alternatively be represented as global
variables. This is simpler if these attributes change rarely.

Martin Odersky, LAMP/DI 13

Example

E(t) = Operation IntOp E(t1) E(t2)

 | Operation EqOp E(t1) E(t2)

 | Operation UnOp E(t1)

 | Ident(name)

• There are the following attributes:

– type : synthesized, persistent

– sym : intrinsic, persistent

– scope: inherited, transient

• Hence we need an analyzer visitor which is structured as follows.

Martin Odersky, LAMP/DI 14

public class Analyzer implements Tree.Visitor {

private Scope scope;

 Analyzer(Scope scope) {
 this.scope = scope;
 }

public Type analyze(Tree tree, Scope scope) {
 tree.apply(new Analyzer(scope));
 return tree.type;
}

 public void caseOperation(Operation tree){
 if (tree.operator == Not ||

 tree.operator == Neg) {
 Type t = analyze(tree.left, scope);
 if (!t.sameType(Type.intType)) {

 error(tree.pos, "integer expected, but "+
 Tree.type + " found");
 tree.type = Type.BAD; // error type

 } else {
 tree.type = Type.intType;

 }
 } else { …
 }
 }

public void caseIdent(Ident tree) {
tree.sym = scope.lookup(tree.name)
if (tree.sym == null) {

error(tree.pos, tree.name + "
 undefined")

tree.type = Type.BAD; }
else { tree.type =

sym.type;
}

}

...

}

Martin Odersky, LAMP/DI 15

Optimizations :

1. Creating a new visitor every time a node is visited takes time.
Efficiency improvement if current visitor is reused.

public Type analyze(Tree tree, Scope scope) {
Scope scope1 = this.scope;
this.scope = scope;
tree.apply(this);
this.scope = scope1;
return tree.type;

}

2. The scope attribute varies only infrequently.
 can use a more efficient analyze method which does not
save/change/restore the scope.

public Type analyze(Tree tree) {
tree.apply(this);

}

Martin Odersky, LAMP/DI 16

Optimizations (2)

3. Checking types and reporting errors if mismatch occurs often and is
fairly tedious.

 Create a helper function checkType
public Type checkType(int pos, Type found, Type required) {

if (found.sameType(required)) return found;
error(pos, "type error: " + required + " required" +

" but " + found + " found");
return Type.BAD;

}

Then caseOperation could be written as follows.
public void caseOperation(Operation tree) {

if (tree.operator == Not || tree.operator == Neg) {
 tree.type = checkType(analyze(tree.left),Tree.intType);
} else ...

}

Martin Odersky, LAMP/DI 17

Summary
• Name analysis and type checking are some of the most complicated

tasks of a compiler.

• Tasks: (1) Check that given AST is legal according to the rules of the
language (context-dependent syntax).
(2) Determine certain attributes of trees (such as: type, sym), which
are needed in later phases.

• Context-dependent syntax can be specified with an attribute
grammar.

• Attributes are fields of tree nodes, computed by attribution rules.

– three subclasses: inherited, synthesized, intrinsic.

• Implementation: Visitor methods over trees. Attributes are
represented as

– fields of the tree, or

– parameters or results of the visitor method, or

– fields of the visitor class.

Martin Odersky, LAMP/DI 18

What ’s to come after the break :

• Code generation.

– What are JVM bytecodes?

– How are J0 constructs mapped into bytecodes?

– How to structure a code generator.

• Run-time organization

– Garbage collectors

Martin Odersky, LAMP/DI 19

The Full Specification of the Context-
Dependent Syntax of JO

P = ModDecl ident {D} "create a new outermost scope "

D = VD | FD

VD = VarDecl T(t) name "create a new symbol in current scope
 with given name and type t.

FD = FunDecl RT(t) name {VD} S "process parameters {VD} in a nested
 scope, create a new symbol named
 currentFun in current scope with

 given name and a function type which
 refers to parameters and resulttype t.

T(t) = int t = Type.intType
| string t = Type.stringType
| T(t1) [] t = new Type.ArrayType

RT(t) = T(t1) t = t1
| void t = Type.voidType

Martin Odersky, LAMP/DI 20

The Full Specification of the Context-
Dependent Syntax of JO (2)

S = VD

| FunCall Ident(name) Es(formal) "see under E », with t = Type.voidType
| Assignment E(t1) E(t2) t1 = t2
| Block {S} "open new local scope"
| IfStmt E(t) S [S] t = Type.intType
| WhileStmt E(t) S t = Type.intType
| ReturnStmt E(t) t = currentFun.type.resType

E(t) = Ident(name, sym) sym = lookup(name)
t = sym.type

| FunCall Ident(name) Es(formal) sym = lookup(name)
sym.type instanceof FunType
formal = sym.type.params
t = sym.type.resType

| Subscript E(t1) E(t2) t1 instanceof ArrayType
t2 = int, t = t1.elemType

| NumLit int t = Type.intType
| StrLit String t = Type.stringType
| Operation UnOp E(t1) t = t1 = Type.intType
| Operation IntOp E(t1) E(t2) t = t1 = t2 = Type.intType
| Operation EqOp E(t1) E(t2) t1 = t2, t= Type.intType
| NewArray T(t1) E(t2) t2 = int, « t = t1[] »

Martin Odersky, LAMP/DI 21

The Full Specification of the Context-
Dependent Syntax of JO (3)

Es(formal) = formal = null
| E(t), Es(formal1) formal.type = t, formal1 = formal.next

UnOp = Neg | Not
EqOp = Eq | Ne
IntOp = And | Or | Add | Sub | Mul |

 Div | Mod | Lt | Gt | Le | Ge

