
Martin Odersky, LAMP/DI 1

Part IX : Object-Oriented Dispatch
Methods

• OO languages support dynamic binding: A method call will
invoke code which depends on the run-time type of the
receiver object.

• Because of subtyping, the run-time type may differ from the
static type, known at compile time.

• Problem: How to do dynamic disptach efficiently.

Martin Odersky, LAMP/DI 2

The Single-Inheritance Case

• Dynamic dispath is relatively easy to implement in the single
inheritance case, where every class has at most one superclass.

• Example:
class Point {

private int x;

Point (int x) { this.x = x; }

int position() { return x; }

Point copy (int delta) {

return new Point (position() + delta);

}

}

class ColoredPoint extends Point {

private Color c;

ColoredPoint (int x, Color c) { super(x); this.c = c }

Color color () { return c; }

ColoredPoint copy (int delta) {

return new ColoredPoint (x + delta, c);

}

}

Martin Odersky, LAMP/DI 3

Graphic 1

Point p

ColoredPoint cp

header

x

c

position

copy

Point VMT

<code…>

<code…>

ColoredPoint VMT

position

copy

color

<code…>

<code…>Dispatch code for calling p.copy :

 p.header.copy()

Martin Odersky, LAMP/DI 4

Method Dispatch

• The VMT dispatch scheme is predominant in single-inheritance
situations.

• Single inheritance languages:

– Simula, Smalltalk, Modula-3, Ada 95, Object Oberon, ...

• Multiple inheritance languages:

– Eiffel, Beta, C++, ...

• Languages with structural subtyping

– Cecil, Self, Pict, ...

• Hybrids -- single inheritance + interfaces:

– Java, Objective C

Martin Odersky, LAMP/DI 5

Techniques for multiple inheritance and
hybrids

• Trampolines

• Row-displacement tables

• Inline caching

Martin Odersky, LAMP/DI 6

Multiple Inheritance Example

class Point {
private int x;
Point (int x) { this.x = x; }
int position () { return x; }
Point copy (int delta) {

return new Point (position() + delta);
}

}

class Colored {
private Color c;
Colored (Color c) { this.c = c; }
Color color () { return c; }

}

class ColoredPoint extends Colored, Point {
ColoredPoint (int x, Color c) {

Point.super (x); Colored.super (c);
}
ColoredPoint copy (int delta) {

return new ColoredPoint (position() + delta, color());
}

}

Martin Odersky, LAMP/DI 7

Trampolines

• Idea: Have multiple entry points for references, one per base
class.

• Every entry point gets a header field pointing to a VMT

• When passing from a subclass to its superclass, we update the
object pointer to point to the correct entry point.

• Overriding makes it necessary to move from an entry point to
the start of the enclosing object.

• This is achieved by a trampoline method which, when called,
returns the reference of the enclosing object by subtracting
a known offset from the entry point.

• This technique has been used in Beta and C++.

Martin Odersky, LAMP/DI 8

Trampolines (2)

• Advantages: Reasonable performance even in the worst case,
both fields and methods can be multiply inherited.

• Disadvantages: Added cost of trampline methods, covariant
datastructures are not supported. E.g. in Java:

 ColoredPoint[] <: Point[]

• This can't work with trampolines since we would have to
update every pointer in the array.

Martin Odersky, LAMP/DI 9

Graphic 2

header

c

x

header

copy()

position()

copy()

position()

tramp()

color()

tramp()

x

header

ccolor()

header

Colored Colored VMT ColoredPoint ColoredPoint VMT1

ColoredPoint VMT2
Point + Point VMT =

Point p; ColoredPoint cp;
p = cp p = cp + 8;
cp = p cp = p.tramp(p)

tramp(p) = p
tramp(p) = p - 8

Martin Odersky, LAMP/DI 10

Row Displacement Tables

Conceptually, the task of dynamic dispatch is as follows:

• Given a number of classes and a number of methods, find the
method code corresponding to a given class and a given
method name.

• If we number both classes and methods, this task can be
reduced to a single indexing operation in a two dimensional
table.

Object
String
Main
.
.
.

e
qu

a
ls

a
pp

e
nd

m
a
in

. . .
- Problem : This table would grow
 very big : Typical application :
 500 classes, 2000 unique method
 names.

Graphic 3

Martin Odersky, LAMP/DI 11

Compacting the Table

• The two-dimensional table is occupied only sparsely, because
any given class implements only a small subset of all methods.

• We can get a better space utilization by overlaying the rows
of this table like a set of combs.

Martin Odersky, LAMP/DI 12

String :
0 3 4 8

0 3 4 8

0 3 4 9

0 3 4 9
Point :

becomes

String

Point

Compacting the Table (2)

Graphic 4

- Variation for Java : Index the table with classes and interfaces
 instead of classes and methods. A table entry points back to the
 place in a VMT where the interface ’s method are implemented.
- This technique has been used in some high-speed Java implemen-
 tations.

Martin Odersky, LAMP/DI 13

Graphic 5

x

c

color()

copy()

position()

ColoredPoint :

ColoredPointVMT :

Colored

Copyable

Row-Displacement
Table

#of Colored
Interface

#of Copyable
Interface

Martin Odersky, LAMP/DI 14

Row Table Dispatch

• Code for I obj; ... obj.meth():
 obj.header[I.number].meth()

• How do we know that the table entry is used for the current
class?

• We don't have to, because Java is statically typed!

• Advantage of row table dispatch: Good performance with
average case = worst case.

Martin Odersky, LAMP/DI 15

Pipelining Considerations

• Both VMT dispatch and row-table dispatch include pipeline
bubbles.

• New instructions can only be fetched after computing the
dynamic method address.

• In modern multi-scalar processors with deep pipelines, this
can be very costly.

• Example: Pipeline of length 6 (+ writeback), 4 way issue: 24
missed intructions!

• And things are getting worse with VLIW.

Martin Odersky, LAMP/DI 16

Inline caching

• Observation: Many calls always go to the same class.

• Idea: For every call instruction, remember the code that was
branched to during the last execution of the instruction.

• Immediately jump to that code without using dynamic
dispatch.

• At the start of the target code, we have to test whether we
are in fact in the right class.

• If we are not, go back to the slower dynamic dispatch scheme.

• This scheme can be a big win, if calls always go to the same
class.

• The scheme is a big loss if they don't.

• Examples?

Martin Odersky, LAMP/DI 17

Inline caching and the JVM

• Inline caching is used to implement calls of interface methods
in Sun's JVM interpreter.

• The instruction invoke_interface has a field which contains
the offset of the method entry that was invoked in the last
execution of the instruction (relative to start of VMT).

• When invoke_interface is executed, it is checked first
whether an entry for the called method is at the given offset.

• If not, all methods of the given object are searched linearly
for one that matches the (name and type) of the called
method.

Martin Odersky, LAMP/DI 18

Polymorphic Inline Caching

• Inline caching is an all-or-nothing optimization -- it's either
very fast or no help at all (even slowing down computation).

• Better compromise: Keep a table of the last n jump targets.

• If the current target is in the table, jump directly, otherwise
go through dynamic dispatch and add new target to table.

• If the table grows too large, revert to all dynamic dispatch.

• This scheme is described in Urs Hölzle's thesis.

• It is used in Self and the Hotspot implementation of Java.

• Advantage: Pipleline bubbles are avoided potentially very
good performance, better even than simple VMT dispatch for
single inheritance.

• Disadvantage: Unpredictable: Can be (a little bit) worse than
VMT dispatch in bad cases.

Martin Odersky, LAMP/DI 19

JIT Compilers

• Interpretation of Java bytecodes incurs overheads which
result in poor performance.

• Distribution of Java classes as native code would improve
performance, at the price of portability and security.

• JIT compilers are a way out of this dilemma.

• A JIT compiler compiles bytecode to native code, either at
load time, or once the code is executed a number of times.

• In principle, JIT-compiled code can be faster than statically
compiled native code since more informations are available at
run-time than at compile-time. (E.g. which methods are called
the most often? How many different methods are invoked by
this call?

Martin Odersky, LAMP/DI 20

JIT Compilers (2)

• In practice, JIT compiled code is usually slower than native
code

– because the compilation overhead adds to the run-time
cost.

– because JIT compiler opimizations need to run fast, and
are therefore less agressive than native code compiler
optimizations.

• Tradeoff: Slow compiler + fast generated code or fast
compiler and slow generated code?

• Related tradeoff: When to invoke JIT compiler?

– Symantec: At first execution

– Inprise : At 2nd execution

– Hotspot : After 10000 executions

– Client hotspot: After 1000 executions

Martin Odersky, LAMP/DI 21

Summary

• We have studied fundamental techniques for constructing
compilers.

– Syntax analysis (top-down and bottom-up)

– Tree matching and manipulation (visitors)

– (Byte-)code generation

• We know now how programs are represented internally

– As token sequences

– As trees with symbol tables and attributes

– As code sequences

• We have experienced construction of a sizeable program
where theory was translated into design and coding patterns.

Martin Odersky, LAMP/DI 22

What was missing

• Advanced type systems with genericity

– How do we specify typing rules?

– How can we implement generic functions and classes?

• Semantics-based compilation

– how do we specify the meaning of programs in a given
language?

– how do we increase the likelyhood that compilers preserve
meaning?

• Optimization

– How can we generate executables that run faster?

– Analysis techniques (e.g. Dataflow)

– Optimization

Martin Odersky, LAMP/DI 23

Comments ?

• What aspects of the course did you like best? least?

• What topics do you want to know more about?

• What topics do you think should be treated in less detail?

• Did you learn more from the lecture or from the project?

• Comments are very welcome; they help us improve the course.

