Part V : Name Analysis

* Programming Languages are not Context Free

- Context Rules for JO

* Representation of Context in a Compiler
+ Skeleton Specification of Visibility Rules

* Memory Management

-+ Optimisation

» Assignment

Martin Odersky, LAMP/DI 1



Programming Languages are not Context
Free

- Counter-example: Every identifier needs to be declared
- « Being declared » is a property that depends on context.

* In theory, the syntax of a programming language could be
specified completely in a context-dependent grammar.

» But in practice, we define a context-free superset of the
language in EBNF, and then weed out illegal programs with
further rules.

* Those rules typically need access to an identifier's
declaration.

Martin Odersky, LAMP/DI



Context Rules for JO

» JO has the standard block-structured visibility rules for identifiers.

» For the purpose of this discussion a block is

- anything enclosed in {} braces, or
- the area consisting of a functions parameter list up to the end of its

body.

- Then we have:

Every identifier has a scope, i.e. an area of the program text in which
it can be referred to.

The scope of an identifier extends from the point of its declaration
to the end of the enclosing block.

It is illegal to refer to an identifier outside its scope.

It isillegal to declare two identifiers with the same name in the same
block.

However, it is legal to declare an identifier in a nested block which is
also declared in an enclosing block.

In this case, the inner declaration hides the outer.

Martin Odersky, LAMP/DI 3



Representation of Context in a Compiler

- We represent context by a global data structure, which
stores for every visible identifier data about its declaration.

* The data structure is called a symbol table, and the
information associated with an identifier is called a symbol/
table entry (or entry for short).

- Since JO has nested blocks, the symbol table should be
structured in the same way.

- The symbol table can be represented as a stack of blocks,
with the currently innermost block on top:

Symbol Table = Stack(Block)
Block List (Entry)
Entry ?

Martin Odersky, LAMP/DI



Symbols

» A symbol is a data structure which contains all information
about a declared identifier which the compiler needs to know.

- Symbols have a hame and a type.
- Symbols are grouped together in scopes.

- It is sometimes necessary to step through all symbols of a
scope in the sequence they were declared.

= Link symbols linearly with a next field.

- This leads to the following class for symbols.

class Symbol {
Symbol next;
String name;
Type type;
// constructor goes here

}

Martin Odersky, LAMP/DI



Types

* A type is a data structure which contains all information about
a value of an expression or a symbol (except its name) which
the compiler needs to now.

- Types come in a variety of forms: int, string, void, array
types T(].

- To record information about a function, we also introduce
function types. Example:
void swap(int[] elems, int i, int j) has Type

void(int[] elems, int i, int j)

* The parameter names elems, i, j are redundant. They are
kept here since this leads to a simpler implementation:
Parameters are simply represented by the scope which
contains them.

Martin Odersky, LAMP/DI 6



Types (2)

- This leads to the following abstract syntax for types.
Type = IntType

StringType

VoidType

Array Type Type

FunType Type Scope

Martin Odersky, LAMP/DI



A Class for Types (1)

- Applying our transformation from abstract syntax to tree
classes systematically yields:

class Type {

static class IntType {}
static class StringType {}
static class VoidType {}
static class ArrayType {
Type elemType;
ArrayType (Type elemType) {
this.elemType = elemType;

}
}

static class FunType {
Type resType;
Scope params;
FunType (Type resType, Scope params) {
this.resType = resType; this.params = params;

}
}

static Type intType = new IntType;
static Type stringType = new StringType;
static Type voidType = new VoidType;

Martin Odersky, LAMP/DI



A Class for Types (2)

*Some classes can be omitted and static class FunType {
H : Type resType;
access canbe optimized by adding a tag Scope params.

Wthh '|'€”S us The k|nd Of a Type FunType (Type resType, Scope params) {
super (FUN) ;

this.resType = resType;

this.params = params;

}
}

static Type intType = new Type(INT);
static Type stringType =
static class ArrayType { new Type (STRING);
Type elemType; static Type voidType = new Type(VOID);
ArrayType (Type elemType) { }
super (ARRAY) ;
this.elemType = elemType;
}
}

Class Type {
static final int
INT = 1, STRING = 2, VOID = 3,
ARRAY = 4, FUN = 4;
int tag; // one of the above

Type(int Tag) { this.tag = tag }

Martin Odersky, LAMP/DI 9



Scopes

- Scopes represent areas of visibility.

* A scope is a data structure which refers to all identifiers
declared in it.

* Scopes are nested; therefore it is convenient to keep an outer
field in a scope which refers to the next enclosing scope.

* This leads to the following class fragment.

Martin Odersky, LAMP/DI 10



A Class for Scopes

class Scope {
Symbol first;
Scope outer;

Scope (Scope outer) { this.outer = outer; }

/** find symbol with given name in this scope.
* return null if non exists

* /
Symbol lookup(String name) {...}

/** enter given symbol in current scope
* /
void enter (Symbol symbol) {...}
}

- Scopes refer to first symbol declared in scope; other symbols
are accessed via next field in class symbo1.

- Exercise: Write implementations for 1ookup and enter.

Martin Odersky, LAMP/DI 11



How It Hangs Together

- Consider the JO program

module Main {

void makeArray(int len) { ... }

void swap (int[] elems, int i, int j) {
int t;
t = elems[i]; // [[in red]] ****
elems[i] = elems[]j];
elems[j] = i;

}

}

» Then at the point marked ****, the symbol table would look as
given on the blackboard.

Martin Odersky, LAMP/DI 12



Memory Management

- Symbol table entries for local variables in blocks that have
already been parsed completely are no longer needed.

* How do we get rid of them?
- In Java, the garbage collector will take care of this.

+ In C/C++ the most effective strategy is a custom memory
allocator that uses mark/release instead of dealloc.

- On block-entry: mark the current heap top

- On block-exit: reset heap top to previous mark.

Martin Odersky, LAMP/DI 13



Optimisation

- The current scheme uses a linear search for identifiers
* In a production compiler this is far too slow.

- Better schemes:

- Additionally link entries as a binary tree and use that for
searching.

- Use a hash table for each block
- Use a global hash table (fastest)

Martin Odersky, LAMP/DI

14



Specification of Context Rules

* How are symbol tables used in a compiler?

* Need to ask first: How do we specifiy use of symbol tables in
the context rules of a language?

* More generally: How do we specify context rules?
- Several methods are possible.

- We use just a semi-formal method, which adds attributes to
symbols and connects attributes with constraints.

Martin Odersky, LAMP/DI

15



Skeleton specification of visibility rules :

VD

FD

T(t)

RT(t)

ModDecl ident {D}

VD | FD

VarDecl T(t) name

"create a new outermost scope”

"create a new symbol in current
scope with given name and type .

FunDecl RT(t) name {VD} S 'process parameters {vp} ina

int

string
T(tl)[]
T(tl)

void

Ident (name)

Martin Odersky,

nested scope; create a new
symbol in current scope with
given name and a function
type which refers to
parameters and resulttype T.

= Type.intType
= Type.stringType

t
t
t = new Type.ArrayType(tl)
t tl

t = Type.voidType

e = findSymbol (name)

LAMP/DI 16



Attribute grammars

» Context-dependend syntax is sometimes specified using an
attribute grammar.

* similar Yo what we have done, but completely formal.

- Attribute grammars are based on concrete context-free
syntax.

- Symbols are given attributes, which can have arbitrary type.

- Attributes are evaluated by assignments similar to our
constraints.

- Attributes are represented as instance variables in tree
nodes.

Martin Odersky, LAMP/DI

17



Type Systems

- Express context-dependend syntax as a deduction system.

- Judgements are the of the form |-<terms : <type>.

- A program P is well-typed iff a judgement —P: Tis provable.
+ Example: A typing rule for addition:

- Atint |- B:int

— A+ B:int

- We usually keep also en environment representing the current
symbol table in a judgement.

- Type systems are often more concise and legible than
attribute grammars.

- Attribute grammars are closer to an implementation.

Martin Odersky, LAMP/DI 18



