
Martin Odersky, LAMP/DI 1

Part V : Name Analysis

• Programming Languages are not Context Free

• Context Rules for JO

• Representation of Context in a Compiler

• Skeleton Specification of Visibility Rules

• Memory Management

• Optimisation

• Assignment

Martin Odersky, LAMP/DI 2

Programming Languages are not Context
Free

• Counter-example: Every identifier needs to be declared

• « Being declared » is a property that depends on context.

• In theory, the syntax of a programming language could be
specified completely in a context-dependent grammar.

• But in practice, we define a context-free superset of the
language in EBNF, and then weed out illegal programs with
further rules.

• Those rules typically need access to an identifier's
declaration.

Martin Odersky, LAMP/DI 3

Context Rules for JO
• JO has the standard block-structured visibility rules for identifiers.

• For the purpose of this discussion a block is

– anything enclosed in {} braces, or

– the area consisting of a functions parameter list up to the end of its
body.

• Then we have:

– Every identifier has a scope, i.e. an area of the program text in which
it can be referred to.

– The scope of an identifier extends from the point of its declaration
to the end of the enclosing block.

– It is illegal to refer to an identifier outside its scope.

– It is illegal to declare two identifiers with the same name in the same
block.

– However, it is legal to declare an identifier in a nested block which is
also declared in an enclosing block.

– In this case, the inner declaration hides the outer.

Martin Odersky, LAMP/DI 4

Representation of Context in a Compiler

• We represent context by a global data structure, which
stores for every visible identifier data about its declaration.

• The data structure is called a symbol table, and the
information associated with an identifier is called a symbol
table entry (or entry for short).

• Since J0 has nested blocks, the symbol table should be
structured in the same way.

• The symbol table can be represented as a stack of blocks,
with the currently innermost block on top:

Symbol Table = Stack(Block)
 Block = List(Entry)
 Entry = ?

Martin Odersky, LAMP/DI 5

Symbols

• A symbol is a data structure which contains all information
about a declared identifier which the compiler needs to know.

• Symbols have a name and a type.

• Symbols are grouped together in scopes.

• It is sometimes necessary to step through all symbols of a
scope in the sequence they were declared.

 Link symbols linearly with a next field.

• This leads to the following class for symbols.
class Symbol {

Symbol next;
String name;
Type type;
// constructor goes here

}

Martin Odersky, LAMP/DI 6

Types

• A type is a data structure which contains all information about
a value of an expression or a symbol (except its name) which
the compiler needs to now.

• Types come in a variety of forms: int, string, void, array
types T[].

• To record information about a function, we also introduce
function types. Example:
 void swap(int[] elems, int i, int j) has type
 void(int[] elems, int i, int j)

• The parameter names elems, i, j are redundant. They are
kept here since this leads to a simpler implementation:
Parameters are simply represented by the scope which
contains them.

Martin Odersky, LAMP/DI 7

Types (2)

• This leads to the following abstract syntax for types.

 Type = IntType
 | StringType

| VoidType
| ArrayType Type
| FunType Type Scope

Martin Odersky, LAMP/DI 8

A Class for Types (1)

• Applying our transformation from abstract syntax to tree
classes systematically yields:

class Type {

static class IntType {}
static class StringType {}
static class VoidType {}
static class ArrayType {

Type elemType;
ArrayType(Type elemType) {

 this.elemType = elemType;
 }

}
static class FunType {

Type resType;
Scope params;
FunType(Type resType, Scope params) {

this.resType = resType; this.params = params;
}

}

static Type intType = new IntType;
static Type stringType = new StringType;
static Type voidType = new VoidType;

}

Martin Odersky, LAMP/DI 9

A Class for Types (2)

•Some classes can be omitted and
access canbe optimized by adding a tag
which tells us the kind of a type.

Class Type {
static final int
INT = 1, STRING = 2, VOID = 3,
ARRAY = 4, FUN = 4;

int tag; // one of the above

Type(int Tag) { this.tag = tag }

static class ArrayType {
Type elemType;

 ArrayType(Type elemType) {
super(ARRAY);
this.elemType = elemType;

}
}

static class FunType {
Type resType;
Scope params;
FunType(Type resType, Scope params) {
super(FUN);
this.resType = resType;

 this.params = params;
}

}

 static Type intType = new Type(INT);
static Type stringType =

 new Type(STRING);
static Type voidType = new Type(VOID);

}

Martin Odersky, LAMP/DI 10

Scopes

• Scopes represent areas of visibility.

• A scope is a data structure which refers to all identifiers
declared in it.

• Scopes are nested; therefore it is convenient to keep an outer
field in a scope which refers to the next enclosing scope.

• This leads to the following class fragment.

Martin Odersky, LAMP/DI 11

A Class for Scopes

class Scope {
Symbol first;
Scope outer;

Scope(Scope outer) { this.outer = outer; }

/** find symbol with given name in this scope.
 * return null if non exists
 */

 Symbol lookup(String name) {...}

 /** enter given symbol in current scope
 */

 void enter(Symbol symbol) {...}

}

• Scopes refer to first symbol declared in scope; other symbols
are accessed via next field in class Symbol.

• Exercise: Write implementations for lookup and enter.

Martin Odersky, LAMP/DI 12

How It Hangs Together

• Consider the J0 program
module Main {

 void makeArray(int len) { ... }

 void swap (int[] elems, int i, int j) {
int t;
t = elems[i]; // [[in red]] ****
elems[i] = elems[j];
elems[j] = i;

}
...

}

• Then at the point marked ****, the symbol table would look as
given on the blackboard.

Martin Odersky, LAMP/DI 13

Memory Management

• Symbol table entries for local variables in blocks that have
already been parsed completely are no longer needed.

• How do we get rid of them?

• In Java, the garbage collector will take care of this.

• In C/C++ the most effective strategy is a custom memory
allocator that uses mark/release instead of dealloc.

• On block-entry: mark the current heap top

• On block-exit: reset heap top to previous mark.

Martin Odersky, LAMP/DI 14

Optimisation

• The current scheme uses a linear search for identifiers

• In a production compiler this is far too slow.

• Better schemes:

– Additionally link entries as a binary tree and use that for
searching.

– Use a hash table for each block

– Use a global hash table (fastest)

Martin Odersky, LAMP/DI 15

Specification of Context Rules

• How are symbol tables used in a compiler?

• Need to ask first: How do we specifiy use of symbol tables in
the context rules of a language?

• More generally: How do we specify context rules?

• Several methods are possible.

• We use just a semi-formal method, which adds attributes to
symbols and connects attributes with constraints.

Martin Odersky, LAMP/DI 16

Skeleton specification of visibility rules :

P = ModDecl ident {D} "create a new outermost scope"

D = VD | FD

VD = VarDecl T(t) name "create a new symbol in current
 scope with given name and type T.

FD = FunDecl RT(t) name {VD} S "process parameters {VD} in a
 nested scope; create a new
 symbol in current scope with
 given name and a function
 type which refers to
 parameters and resulttype T.

T(t) = int t = Type.intType

 | string t = Type.stringType
 | T(t1)[] t = new Type.ArrayType(t1)
RT(t) = T(t1) t = t1
 | void t = Type.voidType
E = Ident(name) e = findSymbol(name)

Martin Odersky, LAMP/DI 17

Attribute grammars

• Context-dependend syntax is sometimes specified using an
attribute grammar.

• similar to what we have done, but completely formal.

• Attribute grammars are based on concrete context-free
syntax.

• Symbols are given attributes, which can have arbitrary type.

• Attributes are evaluated by assignments similar to our
constraints.

• Attributes are represented as instance variables in tree
nodes.

Martin Odersky, LAMP/DI 18

Type Systems

• Express context-dependend syntax as a deduction system.

• Judgements are the of the form <term> : <type>.

• A program P is well-typed iff a judgement P: T is provable.

• Example: A typing rule for addition:

 A: int B: int

 A + B: int

• We usually keep also en environment representing the current
symbol table in a judgement.

• Type systems are often more concise and legible than
attribute grammars.

• Attribute grammars are closer to an implementation.

