
Martin Odersky, LAMP/DI 1

Part III : Parsing

• From Regular to Context-Free Grammars

• Deriving a Parser from a Context-Free Grammar

• Scanners and Parsers

• A Parser for EBNF

• Left-Parsable Grammars

Martin Odersky, LAMP/DI 2

From Regular to Context-Free Grammars

• Regular languages are limited in that they cannot express
nesting.

• Therefore, finite-state machines cannot recognise context-
free grammars.

• But let's try it anyway!

• Example: The grammar:

 A = "a" A "c" | "b".

 leads after simplification to the following ``recogniser'':

Martin Odersky, LAMP/DI 3

From Regular to Context-Free Grammars
(2)

if (sym == "a") {

 next();

 if (sym == A) next(); else error();

 if (sym == "c") next(); else error();

} else if (sym == "b") {

 next();

} else {

 error();

}

• This is bogus, of course, since we have treated the non-
terminal symbol A as a terminal.

• But it leads to a natural extension of our recognising
algorithm.

Martin Odersky, LAMP/DI 4

Deriving a Parser from a Context-free
Grammar

• To derive a parser from a context-free grammar written in
EBNF style:

• Introduce one function void A() for each nonterminal A.

• The task of A() is to recognise sub-sentences derived from A,
or to issue an error if no A was found.

• Translate all regular expressions on the right-hand side of
productions as before, with the addition that

– every occurrence of a nonterminal B maps to B().

– Recursion in the grammar translates naturally to
recursion in the parser.

• This technique of writing parsers is called parsing by
« recursive descent », or « predictive parsing ».

Martin Odersky, LAMP/DI 5

Deriving a Parser from a Context-free
Grammar (2)

Example: The grammar:
A = "a" A "c" | "b".

now leads to the function:
void A() {

 if (sym == "a") {

 next();

 A();

 if (sym == "c") next(); else error();

 } else if (sym == "b") {

 next();

 } else {

 else error();

 }

}

Martin Odersky, LAMP/DI 6

Scanners and Parsers

• Most compilers in practice have both a scanner for the lexical
syntax and a parser for the context-free syntax

• Advantages: Separation of concerns, better modularity.

Component Input Output

Scanner

Parser

Characters

Symbols

Symbols

Syntax-Tree

Martin Odersky, LAMP/DI 7

A Parser for EBNF

• We write the parser as an extension of the Scanner.
package ebnf;
import java.io.*;
class Parser extends Scanner {
 public Parser(InputStream in) {
 super(in);
 nextSym();
 }

• Now, simply translate each production according to the given
scheme.

• Here's the production for parsing a whole grammar:
/* syntax = {production} <eof> */
public void syntax() {
 while (sym != EOF) {
 production();
 }
}

Martin Odersky, LAMP/DI 8

A Parser for EBNF (2)

And here are the productions for the other nonterminals.
/* production = identifier "=" expression "." */
void production() {
 if (sym == IDENT) nextSym();
 else error("illegal start of production");

 if (sym == EQL) nextSym();
 else error("`=' expected");

 expression();

 if (sym == PERIOD) nextSym();
 else error("`.' expected");
}
/* expression = term {"|" term} */
void expression() {
 term();
 while (sym == BAR) {
 nextSym();
 term();
 }
}

Martin Odersky, LAMP/DI 9

A Parser for EBNF (3)

 /* term = {factor} */
void term() {
while (sym == IDENT || sym == LITERAL ||
 sym == LPAREN || sym == LBRACK || sym == LBRACE)
 factor();
}
/* factor = identifier | string |
* "(" expression ")" | "[" expression "]" |
 "{" expression "}" */
void factor() {
 switch (sym) {
 case IDENT:
 nextSym();
 break;
 case LITERAL:
 nextSym();
 break;

Martin Odersky, LAMP/DI 10

A Parser for EBNF (4)

 case LPAREN:
 nextSym();
 expression();
 if (sym == RPAREN) nextSym();
 else error("`)' expected");
 break;
 case LBRACK:
 nextSym();
 expression();
 if (sym == RBRACK) nextSym();
 else error("`]' expected");
 break;
 case LBRACE:
 nextSym();
 expression();
 if (sym == RBRACE) nextSym();
 else error("`}' expected");
 break;
 default:
 error("illegal start of factor");
 }
}

Martin Odersky, LAMP/DI 11

Left-Parsable Grammars

As before, the grammar must be left-parsable for this scheme
to work.

Two conditions:

• In an alternative T_1 | ... | T_n, the terms do not have
any common start symbols.

• If some part exp of a regular expression contains the empty
string then exp cannot be followed by any symbol that is also
a start symbol of exp.

• We now formalize what this means by defining for every
symbol X the sets first (X), follow (X) and nullable (X).

Martin Odersky, LAMP/DI 12

From EBNF to simple BNF

It's easy to convert an EBNF grammar to BNF:

–Convert every repetition {E} in a EBNF grammar to a fresh
nonterminal symbol Xrep and add the production:

Xrep = E Xrep |

–Convert every option [E] in the grammar to a fresh
nonterminal symbol Xopt and add the production:

Xopt = E |

• We can even do away with the alternatives by having several
productions for the same nonterminal symbol. Example:

Xrep = E Xrep |

becomes
Xrep = E Xrep
Xrep =

Martin Odersky, LAMP/DI 13

Definition of first, follow and nullable

Given a context free language, define

 nullable the set of non-terminal symbols that can derive
the empty string.

 first(X) the set of terminal symbols that can begin
strings derived from X.

 follow(X) the set of terminal symbols that can
immediately follow X. That is, t follow(X) if
there is a derivation that contains X t.

Martin Odersky, LAMP/DI 14

Formal definition of first, follow and
nullable

first, follow and nullable are the smallest sets for which these
properties hold.

for each production X = Y1 ... Yk, 1 i < j k:

 if { Y1, ..., Yk } nullable

 X nullable

 if { Y1, ... Yi-1 } nullable

 first(X) = first(X) first(Yi)

 if { Yi+1, ..., Yk } nullable

 follow(Yi) = follow(Yi) follow(X)

 if { Yi+1, ..., Yj-1 } nullable

 follow(Yi) = follow(Yi) first(Yj)

Martin Odersky, LAMP/DI 15

Algorithm for computing first, follow and
nullable

Simply replace equations by assignments and iterate until no
change.

 nullable := {}
 for each terminal t: first(t) := {t} ; follow(t) := {}
 for each nonterminal Y: first(Y) := {} ; follow(Y) := {}
 repeat
 nullable' := nullable ; first' := first ; follow' := follow
 for each production X = Y1 ... Yk, 1 i < j k:
 if { Y1, ..., Yk } nullable
 nullable := nullable { X }
 if { Y1, ... Yi-1 } nullable
 first(X) := first(X) first(Yi)
 if { Yj+1, ..., Yk } nullable
 follow(Yi) := follow(Yi) follow(X)
 if { Yi+1, ..., Yj-1 } nullable
 follow(Yi) := Follow(Yi) first(Yj)
 until nullable' = nullable & first' = first & follow' = follow.

Martin Odersky, LAMP/DI 16

LL(1) Grammars

• Definition: A simple BNF grammar is LL(1) if for all
nonterminals X:
if X appears on the left-hand side of two productions

 X = E1

 X = E2
then
 first(E1) first(E2) = {}
and either

 neither E1 nor E2 is nullable
or
 exactly one Ei is nullable and
 first(X) follow(X) = {}

• LL(1) stands for "left-to-right parse, leftmost derivation, 1
symbol lookahead".

• Recursive descent parsers work only for LL(1) grammars.

Martin Odersky, LAMP/DI 17

Converting to LL(1)

• Example: Grammar for arithmetic expressions over arrays.

 E = E "+" T | E "-" T | T

 T = T "*" F | T "/" F | F

 F = ident | ident "[" E "]" | "(" E ")"

• Is this grammar LL(1)?

Martin Odersky, LAMP/DI 18

Techniques :

• Eliminate left recursion. E.g.

 E = E "+" T | E "-" T | T

 becomes

 E = T { "+" T | "-" T}

• Left-factoring: E.g.

 F = ident | ident "[" E "]" | ...

 becomes

 F = ident (| "[" E "]") | ...

 or, using an option:

 F = ident ["[" E "]"] | ...

Martin Odersky, LAMP/DI 19

Limitations

• Elimination of left recursion and left factoring work often,
but not always.

• - Example:

 S = { A }.

 A = id ":=" E.

 E = {id}.

• This language cannot be given an LL(1) grammar. But it is
LL(2), i.e. can be parsed with 2 symbols look-ahead.

• Generally LL(k) is a true subset of LL(k+1).

• But LL(1) is the only interesting case.

Martin Odersky, LAMP/DI 20

Summary : Top-Down Parsing

• A context free grammar can be converted directly into a
program scheme for a recursive descent parser.

• A recursive-descent parser builds a derivation top down, from
the start symbol towards the terminal symbols.

• Weakness: Must decide what to do based on first input
symbol.

• This works only if the grammar is LL(1).

Martin Odersky, LAMP/DI 21

Bottom-Up Parsing

• A bottom-up parser builds a derivation from the terminal
symbols, working toward the start symbol.

• It consists of a stack and an input.

• Two basic actions:

 shift : push next symbol from input on stack

 reduce: remove symbols Yn,...,Y1 which form right-hand
 side of some production

 X = Y1...Yn

 from top of stack and replace by X.

• Other actions: accept, error.

• Question: How does the parser know when to shift and when
to reduce?

Martin Odersky, LAMP/DI 22

Simple Answer : Operator Precedence

• Suitable for languages of the form

 Expression = Operand Operator Operand.

 with operands of varying precedence and associativity.

• Principle:

 let IN be next input symbol.
 if IN is an operand then
 shift
 else if stack does not contain an operator then
 shift
 else
 let TOP be the topmost operator on stack.
 if precedence(TOP) < precedence(IN) then shift
 else if precedence(TOP) > precedence(IN) then reduce
 else if IN and TOP are both right associative then shift
 else if IN and TOP are both left associative then reduce
 else error

Martin Odersky, LAMP/DI 23

More General Answer : LR(0) Parsing

• Idea: Use a DFA applied to the stack to decide whether to
shift or to reduce.

• The states of the DFA are sets of LR(0) items.

• An LR(0) item is of the form

 [X = A . B]

 where X is nonterminal symbol and A,B are possibly empty
strings of symbols.

• An LR(0) item describes a possible situation during parsing,
where

–X = AB is a possible production for the current derivation

–A is on the stack

–B remains in the input.

–Hence, the "." describes the border between stack and
input.

Martin Odersky, LAMP/DI 24

More General Answer : LR(0) Parsing
(2)

• Principle:

– Shift in a state which contains the item [X = A . b B] if the
next input symbol is b.

– Reduce in a state which contains the item [X = A .]

• Example: See Appel, Figure 3.20

• The resulting parser is called LR(0) since it parses input left-
to-right and describes a right-most derivation in reverse. The
0 means that the parser uses no lookahead on the input.

Martin Odersky, LAMP/DI 25

SLR Parsing

• Problem: Some states contain both shift and reduce items.

• Example: Consider the grammar:

 S = E $

 E = T + E
 E = T

 T = (E)

 T = x

• LR(0) state construction gives a state containing the items

 E = T. + E

 E = T.

• If we see "+" as next input symbol, should we shift or reduce?

• Solution: Reduce only if input symbol is in follow(E).

• The resulting parser is called "simple LR", or SLR.

Martin Odersky, LAMP/DI 26

LR(1) Parsing

• Even more powerful than SLR is LR(1) Parsing.

• LR(1) Parsing refines the notion of state. A state is now a set
of LR(1) items, where each item is of the form

 [X = A . B ; c]

• This models the following situation

 X = AB is a production of the grammar
 A is on the stack
 Bc is part of the input

• The rest of the construction is similar to LR(0), except that
we reduce in a state with item

 [X = A . ; c]
only if the next input symbol is c.

• The result is called LR(1) parsing, since it reads input left-to-
right, describes a right-most derivation in reverse, and uses 1
look-ahead symbol.

Martin Odersky, LAMP/DI 27

LALR(1) Parsing

• LR(1) Parsers are more powerful than SLR parsers.

• But: There are many more LR(1) states than LR(0) states.
Often, there is a problem with state explosion.

• Solution: Merge states that differ only in their lookahead
symbol.

• Example: The two states,

 {[X = A.B ; c]}, {[X = A.B ; d]}

 become:

 {[X = A.B ; c], [X = A.B ; d]}

• The resulting parser is called LALR(1) for Look-Ahead-LR(1).

• The LALR(1) technique is the basis of most parser generators,
e.g. Yacc, Bison, JavaCUP.

Martin Odersky, LAMP/DI 28

A Hierarchy of Grammar Classes

Ambiguous
Grammars

Unambiguous Grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)LL(0)

LL(1)

LL(k)

Martin Odersky, LAMP/DI 29

Example Parser Specification

Terminal ID, WHILE, BEGIN, END, DO, IF, THEN, ELSE,
SEMI, ASSIGN;

non terminal prog, stm, stmlist;

start with prog;

prog ::= stmlist;

stm ::= ID ASSIGN ID

 | WHILE ID DO stm

 | BEGIN stmlist END

 | IF ID THEN stm

 | IF ID THEN stm ELSE stm;

stmlist ::= stm

 | stmlist SEMI stm;

Martin Odersky, LAMP/DI 30

Pragmatics

• Is the grammar of J0 LL(1) or LR(1)?

• It's not even un-ambiguous!

• Problem:

 Block = {Statement}

 Statement = "if" "(" Expression ")" Statement ["else"
 Statement]

• How do we parse
 if (x != 0) if (x < 0) then y = -1 else y = 1

• ?

Martin Odersky, LAMP/DI 31

Pragmatics (2)

• Exercise: Rewrite the grammar so that it becomes
unambiguous.

• Pragmatic solutions:

– Recursive descent: Apply longest match rule

– LR: Have priorities of rules. E.g., with earlier rules taking
precedence over later ones:

Statement = "if" "(" Expression ")" Statement "else"
 Statement

Statement = "if" "(" Expression ")" Statement

Martin Odersky, LAMP/DI 32

Relative Advantages of Top-Down and
Bottom-Up :

Top-down: + Easy to write by hand
 + Flexible embedding in compiler possible
 - Harder to maintain
 - Error recovery can be tricky
 - Deep recursion can be inefficient.

Bottom-Up: + Larger class of languages and grammars
 - Needs tool to generate
 - Less flexible to embed in compiler
 - Depends on quality of tool

Mixtures are possible. Many parsers in commercial compilers
use recursive descent, with operator precedence for
expressions, to get rid of deep recursion.

Martin Odersky, LAMP/DI 33

Error Diagnosis
• When encountering an illegal input program, the parser needs

to give an error message.

• What error message should be given for:

 x [i) = 1;

• and for:

 x = if (a < b) 1 else 2;

• It's often helpful to include the actual input that was
encountered. E.g.

 "{" expected but identifier found

• We can use the representation function in the Scanner for
this task.

Martin Odersky, LAMP/DI 34

Error Recovery

• After an error, the parser should be able to continue
processing.

• Processing is for finding other errors, not for generating
code.

 Code generation will be disabled.

• Question: How can the parser recover from an error and
resume normal parsing?

• - Two elements of the solution:

– Skip part of the input

– Reset the parser into a state where it can process the
rest of the input.

Martin Odersky, LAMP/DI 35

Error Recovery for Recursive Descent

• Let X1 ... Xn be the current stack of executing parsing
methods.

• Idea: Skip the input to a symbol in FOLLOW(Xi) for some i
and unwind the stack until the return point of Xi.

• In practice, it's often good enough to have a fixed set of stop
symbols which terminate a skip. E.g., for J0:

 ";", "}", ")", EOF

• In practice, it's also important to skip sub-blocks completely.

 Example:
if x < 0 { ... }
 ^ '(' expected but identifier found

 Should not skip to "}"!

• This can be achieved by counting opening parentheses and
braces.

Martin Odersky, LAMP/DI 36

A Skip Procedure

void skip () {

 int nparens = 0;

 while (true) {

 switch (token) {

 case EOF : return;

 case SEMI : if (nparens == 0) return;

 break;

 case LPAREN:

 case LBRACE: nparens++; break;

 case RPAREN:

 case RBRACE: if (nparens == 0) return;

 nparens--; break;

 }

 nextToken();

 }

 }

Martin Odersky, LAMP/DI 37

Rewinding the Stack

• Problem: How do we rewind the stack in a recursive descent
parser?

• Surprisingly simple solution: Simply continue parsing, as if
nothing had happened!

• Eventually, the parser will reach a state where it can accept
the stop symbol that's first on the input after a skip.That is,
it will re-synchronize.

• Necessary for termination: The parser should not invoke a
method X() unless the next input symbol is in first(X).

• But this will generate lots of spurious error messages until
the parser re-snychronizes!

• Solution: After a skip, don't print any error messages until
the parser has consumed at least one other input symbol.

Martin Odersky, LAMP/DI 38

Handling Syntax Errors
• Introduce a global variable pos for the position of next input

token (either in lines, columns, or in number of characters
from start).

• pos should be maintained by scanner.

• Introduce a global variable skipPos for the position we last
skipped to.

 int skipPos = -1

• Now define a procedure for handling syntax errors as follows.
/** Generate a syntax error unless one was
 already reported at the current skip position,

then skip. */
private void syntaxError(String msg) {
 if (pos != skipPos) errorMsg(pos, msg);
 skip();
 skipPos = pos;
}

• This is very simple and works well in practice.

Martin Odersky, LAMP/DI 39

Bottom-Up Error Recovery

• Various schemes are possible. Here's the one implemented in
Yacc, Bison, JavaCUP:

• Introduce a special symbol error.

• The author of a parser can use error in productions.

• For instance:
Block = "{" {Statement}"}"

 | "{" {Statement} error "}"

Martin Odersky, LAMP/DI 40

Bottom-Up Error Recovery (2)

• If the parser encounters an error, it will pop the stack until it
gets into a state where error is a legal next symbol.

Block = "{" {Statement} . error "}"

• At this point, error will be shifted:
Block = "{" {Statement} error . "}"

• Then, the input symbols are skipped until the next input
symbol is one that can legally follow in the new state.

• This scheme is very dependent on a good choice of error
productions.

