
Martin Odersky, LAMP/DI 1

Part II : Lexical Analysis

• Regular Languages

• Translation from regular languages to program code

• A grammar for JO

• Context-free Grammar of JO

• Assignment 1

Martin Odersky, LAMP/DI 2

Regular Languages

Definition : A language is regular if its syntax can be
expressed by a single EBNF rule without recursion.

Since there is only one, non-recursive rule, all symbols on the
right-hand side of the production must be terminal symbols.
The right-hand side is also called a regular expression.

Regular languages are interesting since they can be recognised
by finite-state machines.

Alternatively, a language is regular if its syntax can be
expressed by a number of EBNF rules, but no recursion
between the rules is allowed.

Example :
identifier = letter {letter | digit}

digit = "0" | ... | "9 »

letter = "a" | ... | "z" | "A" | ... | "Z"

Martin Odersky, LAMP/DI 3

Regular Languages and Lexical Analysis

• The syntax of a programming language is usually given in two
stages.

• Micro-Syntax describes the form of individual words or
tokens.

• Macro-Syntax describes how programs are formed out of
tokens.

• The translation of source programs into token sequences is
the main task of the lexical analyzer component in a compiler.

• Micro-syntax is usually described by a regular language.

• Hence, lexical analyzers can be finite state machines.

• What kind of programs correspond to finite state machines?

Martin Odersky, LAMP/DI 4

Exercise

Assume you have a function
char next ();

which returns the next input character.

Write a function
boolean isIdent ()

which tests whether the input is of the form

 input = identifiier ‘ \ n ’.

Did the grammar for identifiers help you in writing the
function?

In what way ?

Martin Odersky, LAMP/DI 5

Translation from regular languages to
program code

K Pr(K)

"x" if (sym == "x") next(); else error();

(exp) Pr(exp)

[exp] if (« sym in first(exp) ») { Pr(exp) }

{exp} while (« sym in first(exp) ») { Pr(exp) }

fact1 ... factn Pr(fact1) ; ... ; Pr(factn)

term1 | ... | termn switch (sym) {

 case first(term1): Pr(term1); break;

 ...

 case first(termn): Pr(termn); break;

 default: error()

 }

Martin Odersky, LAMP/DI 6

Translation from regular languages to
program code (2)

Assumptions :

• one symbol lookahead, stored in sym.

• next () reads next symbol into sym.
• error () quits with an error message.
• first (exp) is the set of start symbols of exp.

• The given syntax is assumed to be left-parsable (or :
deterministic).

Martin Odersky, LAMP/DI 7

Translation from regular languages to
program code (3)

This means :

K Condition

term1 | ... | termn The terms do not have any common start
symbols.

fact1 ... factn if facti contains the empty sequence then
facti and facti+1 do not have any common
start symbols.

{exp}, [exp] if exp contains the empty sequence then
the set of start symbols of exp may not

 contain any symbol that can also follow it.

Martin Odersky, LAMP/DI 8

Example : A Scanner for Identifiers

void ident () {
if (isLetter(ch)) next(); else error();
while (isLetterOrDigit(ch)) {
 switch (ch) {
 case 'a': ... case 'z':
 case 'A': ... case 'Z': letter(); break;
 case '0': ... case '9': digit(); break;
 }
}}

where

 boolean isLetter(char ch) {
 return
 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z ’
}

 boolean isDigit(char ch) {
 return '0' <= ch && ch <= '9';
}

 boolean isLetterOrDigit(char ch) {
 return isLetter(ch) || isDigit(ch);
}

Martin Odersky, LAMP/DI 9

void letter() {

 switch (ch) {

 case 'a': if (ch == 'a') next(); else error();

 ...

 case 'Z': if (ch == 'Z') next(); else error();

 }

 void digit() {
 switch (ch) {

 case '0': if (ch == '0') next(); else error();

 ...

 case '9': if (ch == '9') next(); else error();

 }

• or, a little more streamlined:

void ident () {

 if ('a' <= ch && ch <= 'z' ||

 'A' <= ch && ch <= 'Z')
 next();

 else error();

 while ('a' <= ch && ch <= 'z' ||

 'A' <= ch && ch <= 'Z' ||

 '0' <= ch && ch <= '9')
 next();

Martin Odersky, LAMP/DI 10

The Task of a Lexical Analyzer

• The basic action of a lexical analyzer is to read some part of
the input and to return a token:

Token sym;
void nextSym () {
 "skip white space and assign next token to sym"

}

• Whitespace can be

– blank character, tabulator, newline

– more general: any character <= ' '

– comments: any sequence of characters enclosed in /* ... */.

• A token consists of a token class and possibly some additional
information.

Martin Odersky, LAMP/DI 11

Whitespace and Tokens

• Token classes

IDENT foo, main,

NUMBER 0, 123, 1000

FLOAT 0.5 1.0e+3

STRING "", "a", "*** error"

MODULE module

VOID void

LPAREN (

RPAREN)

LBRACE {

RBRACE }

SEMICOLON ;

EOF \uFFFF (i.e. (char)-1)
 ...

• Token classes are represented as int's in Java.

Martin Odersky, LAMP/DI 12

Example Run of a Lexical Analyzer

• For the following J0 program
module M {
 void main () {
 println ("hello world\n");
 }
}

• The lexical analyzer should return:

 MODULE IDENT(M) VOID IDENT(main) LPAREN

 RPAREN LBRACE IDENT(println) LPAREN

 STRING("hello world\n") RPAREN SEMICOLON

 RBRACE RBRACE EOF

Martin Odersky, LAMP/DI 13

The Interface of a Lexical Analyzer

class Scanner {

/** Constructor */

Scanner (InputStream in)

 /** The symbol read last */

 int sym;

 /** The symbol's character representation */

 String chars;

 /** Read next token into sym and chars */

 void nextSym ()

 /** Close input stream */

 void close()

 }

Martin Odersky, LAMP/DI 14

Lexical syntax of EBNF

The syntax of EBNF lexemes :

symbol = {blank}
 (identifier | literal |

 "(" | ")" | "[" | "]" | "{" | "}" | "|" | "=" | ". ").

Identifier = letter { letter | digit }.

literal = "\"" {stringchar} "\" ».

stringchar = escapechar | plainchar.

escapechar = "\\" char.

plainchar = charNoQuote.

Martin Odersky, LAMP/DI 15

EBNF symbol definition
package ebnf;

interface Symbols {

 static final int

 ERROR = 0,

 EOF = ERROR +1, IDENT = EOF +1,

 LITERAL = IDENT +1, LPAREN = LITERAL+1,

 RPAREN = LPAREN +1, LBRACK = RPAREN +1,

 RBRACK = LBRACK +1, LBRACE = RBRACK +1,

 RBRACE = LBRACE +1, BAR = RBRACE +1,

 EQL = BAR +1, PERIOD = EQL +1;

}

Java notes:

• Symbols kept in an interface which can be « inherited » by classes
needing access to them.

• +1 trick compensates for lack of enums in Java.

Martin Odersky, LAMP/DI 16

EBNF Scanner (1)
package ebnf;

import java.io.*;

class Scanner implements /*imports*/
Symbols {

 /** the symbol recognized last */
public int sym;

 /** if that symbol was an identifier
 or a literal, it's string
 representation */
public String chars;

 /** the character stream being tokenized
*/
private InputStream in;

 /** the next unconsumed character */
private char ch;

 /** a buffer for assembling strings */
private StringBuffer buf =
 new StringBuffer();

 /** the end of file character */
private final char eofCh = (char) -1

 /** constructor */
public Scanner(InputStream in) {
 this.in = in;
 nextCh(); }

 public static void error(String msg) {
 System.out.println(
 "**** error: "+msg);
 System.exit(-1);
}

 /** print current character and read
 next character */
private void nextCh() {
 System.out.print(ch);
 try {
 ch = (char)in.read();
 } catch (IOException ex) {
 error("read failure: " +
 ex.toString());
 }
}

 /** read next symbol*/
public void nextSym() {
 while (ch <= ' ') nextCh();
 switch (ch) {
 case 'a': . . . case'z':
 case 'A': . . . case'Z':
 buf.setLength(0);
 buf.append(ch); nextCh();
 while ('a' <= ch && ch <= 'z' ||
 'A' <= ch && ch <= 'Z' ||
 '0' <= ch && ch <= '9') {
 buf.append(ch); nextCh();}

Martin Odersky, LAMP/DI 17

EBNF Scanner (2)
 sym = IDENT;

 chars = buf.toString();
 break;
 case '\"':
 nextCh();
 buf.setLength(0);
 while (' ' <= ch && ch != eofCh &&
 ch != '\"') {
 if (ch == '\\') nextCh();
 buf.append(ch); nextCh();
 }
 if (ch == '\"') nextCh();
 else
 error("unclosed string literal");
 sym = LITERAL;
 chars = buf.toString();
 break;
 case '(':
 sym = LPAREN; nextCh(); break;
 case ')':
 sym = RPAREN; nextCh(); break;
 case '[':
 sym = LBRACK; nextCh(); break;
 case ']':
 sym = LBRACK; nextCh(); break;
 case '{':
 sym = LBRACE; nextCh(); break;
 case '}':
 sym = LBRACE; nextCh(); break;

 case '|':
 sym = BAR; nextCh(); break;
 case '=':
 sym = EQL; nextCh(); break;
 case '.':
 sym = PERIOD; nextCh(); break;
 case eofCh:
 sym = EOF; break;
 default:
 error("illegal character: " + ch +
 "(" + (int)ch + ")");
 }
 }

 /** the string representation of a symbol*/
public static String representation

(int sym) {
 switch (sym) {
 case ERROR : return "<error>";
 case EOF : return "<eof>";
 case IDENT : return "identifier";
 case LITERAL: return "literal";
 case LPAREN : return "`('";
 case RPAREN : return "`)'";
 . . .
 default : return "<unknown>"; }
}

 public void close() throws IOException {
 in.close(); }

Martin Odersky, LAMP/DI 18

A Testbed for the EBNF Scanner

package ebnf;

import java.io.*;

class ScannerTest implements Symbols {

 static public void main(String[] args) {

 try {

 Scanner s = new Scanner(new FileInputStream(args[0]));

 s.nextSym();

 while (s.sym != EOF) {

 System.out.println("[" + Scanner.representation(s.sym) + "]");

 s.nextSym();

 }

 s.close();

 } catch (IOException ex) {

 System.out.println(ex);

 System.exit(-1);

 }

 }

}

Martin Odersky, LAMP/DI 19

The Longest Match Rule

• Problem :
The given syntax for EBNF is ambiguous

(why ?)

• Solution :

The scanner matches at each step the longest symbol that
fits the definition

(« longest match rule »)

Martin Odersky, LAMP/DI 20

Generating Lexical Analyzers Automatically

• There is a systematic way to map any regular expression to a
lexical analyzer

• Three steps:

– Regular expression -> (nondeterministic) finite state
automaton (NFA)

– NFA -> deterministic finite state automaton (DFA)

– DFA -> generated scanner program

• - This can be automatized in a scanner generator.

Martin Odersky, LAMP/DI 21

Finite State Automata

• Consist of a finite number of states and transitions

• Transitions are labelled with input symbols

• There is one start state.

• A subset of states are the final states.

• A finite state automaton starts in the start state, and for
each sinput symbol follows an edge labelled with that symbol.

• It accepts an input string iff it ends up in a final state.

• Examples: See blackboard, and Appel Figure 2.3.

Martin Odersky, LAMP/DI 22

(Non)Deterministic Finite State Automata

• In a nondeterministic finite state automaton (NFA), there can
be more than one edge originating from the same node and
labelled with the same label.

• Or there can be a special edge which can be follwed without
consuming any input symbols.

• By contrast, in a deterministic finite state automaton all
edges leaving some node have pairwise disjoint label sets, and
there are no labels.

Martin Odersky, LAMP/DI 23

From Regular Expressions to NFA ’s

aa

M N M N

M | N

M

N

• Here is a systematic way to translate any regular expression into an
NFA :

{M}

Martin Odersky, LAMP/DI 24

Converting NFA ’s to DFA ’s

• Problem: Executing an NFA needs backtracking, which is
inefficient.

• Would like to convert to a DFA

• Essential idea: Construct a DFA which has a state for each
possible set of states a given NFA could be in.

• A set of states is final in a DFA if it contains a final NFA
state.

• Since the number of states of an NFA is finite (say N), the
number of possible sets of states is also finite (bounded by
2N)

• Often, the number of reachable sets of states is much
smaller.

Martin Odersky, LAMP/DI 25

Algorithm to Convert NFA ’s to DFA ’s

• See Appel, Section 2.4

• First step: For a set of states S, let closure(S) be the
smallest set of states that is reachable from S using only
transitions.

• - Algorithm to compute closure(S):
 T := S

 repeat

 T' := T ;

 for each state s in T

 for each edge e from s to some state s'

 if (e is labelled with)

 T := T {s ’}

 until T = T'

Martin Odersky, LAMP/DI 26

• Second step: For a set of states S and an input symbol c, let
DFAedge(S,c) be the set of states that can be reached from
S by following an edge labelled with c.

• - Algorithm to compute DFAedge
T := {}
for each state s in S
 for each edge e from s to some state s ’
 if (e is labelled with c)
 T := T \ closure({s'})

Martin Odersky, LAMP/DI 27

DFA Simulation

• Using the machinery developped so far, we can already
simulate a DFA, given an equivalent NFA:

• Let s1 be the NFA's start state and let the current input
stream be c1 ... ck. Then the simulation works as follows:

d := closure({s1})
for i := 1 to k do
 d := DFAedge (d, ci)

• Manipulating these sets at run time is still very inefficient.

Martin Odersky, LAMP/DI 28

DFA Construction

• DFA states are numbered from 0

• 0 is the error state; the DFA goes into state 0 iff the NFA
would have blocked because no edge matched the input
symbol.

• Data structures:

states: An array which maps each DFA state to the set of
NFA states it represents.

trans: A matrix of transitions from state numbers to state
numbers

Martin Odersky, LAMP/DI 29

DFA Construction (2)

• Algorithm
states[0] := {} // error state
states[1] := closure({s_1})
 j := 0 ; p := 2
/* states[0..j) have been processed completely
 states[j..p) are as yet unprocessed
*/
while j < p do
 for each input character c
 d := DFAedge (states[j], c)
 if (d == states[i] for some i < p)
 trans[j, c] := i
 else
 states[p] := d
 trans[j, c] := p
 p := p + 1
 j := j + 1

Martin Odersky, LAMP/DI 30

Executing a DFA

• First possibility: Represent the DFA by a matrix:

trans: Array [StateIndex, InputSymbol] of StateIndex

• Analyzer loop:
s := 0; // the DFA start state
while ("more input") {
 c := "next input character »
 s := trans[s, c]
}

Martin Odersky, LAMP/DI 31

Executing a DFA (2)

• Second possibility: Represent DFA by a case statement:
s := 0
while ("more input") {
 c := "next input character »
 switch (s) {
 case 0:
 switch (c) {
 case 'a': s := 3
 ...
 }
 ...
 }
}

Martin Odersky, LAMP/DI 32

Summary : Lexical Analysis

• Lexical analysis turns input charcaters into tokens.

• Lexical syntax is described by regular expressions.

• We have learned two ways to construct a lexical analyzer
from a grammar for lexical syntax.

• By hand, using a program scheme.

– This works if the grammar is left-parsable.

• By machine, going from regular expression to NFA to DFA.

Martin Odersky, LAMP/DI 33

Scanner generators

• There are a number of generators which generate a lexical
analyzer automatically from a description.

• Description enumerates token classes and gives their syntax
as regular expressions.

• Examples: Lex, JavaLex.

• Advantages of using a scanner generator?

• Disadvantages?

