Part IT : Lexical Analysis

* Regular Languages

- Translation from regular languages to program code
- A grammar for JO

» Context-free Grammar of JO

- Assignment 1

Martin Odersky, LAMP/DI

Regular Languages

Definition : A language is regular if its syntax can be
expressed by a single EBNF rule without recursion.

Since there is only one, non-recursive rule, all symbols on the
right-hand side of the production must be terminal symbols.
The right-hand side is also called a regular expression.

Regular languages are interesting since they can be recognised
by finite-state machines.

Alternatively, a language is regular if its syntax can be
expressed by a number of EBNF rules, but no recursion
between the rules is allowed.

Example :
identifier = letter {letter | digit}
digit = "0" | ... | "9 »
letter = "a" | ... | "z" | "aA" | ... | "2"

Martin Odersky, LAMP/DI

Regular Languages and Lexical Analysis
- The syntax of a programming language is usually given in two
stages.

* Micro-Syntax describes the form of individual words or
tokens.

- Macro-Syntax describes how programs are formed out of
tokens.

- The translation of source programs into foken sequences is
the main task of the /exical analyzer component in a compiler.

* Micro-syntax is usually described by a reqular language.
* Hence, lexical analyzers can be finite state machines.

* What kind of programs correspond to finite state machines?

Martin Odersky, LAMP/DI

Exercise

Assume you have a function

char next ();

which returns the next input character.

Write a function

boolean isIdent ()

which tests whether the input is of the form
input = identifiier '\ n".

Did the grammar for identifiers help you in writing the
function?

In what way ?

Martin Odersky, LAMP/DI

Translation from regular languages to
program code

K Pr(K)

"x" if (sym == "x") next(); else error();
(exp) Pr(exp)

[exp] if (« sym in first(exp) ») { Pr(exp) }
{exp} while (« sym in first(exp) ») { Pr(exp) }
fact, ... fact, Pr(facty) ; ... Pr(fact,)

term, | ... | term, switch (sym) {

case first(term,): Pr(term,); break:

case first(term,): Pr(term,); break;
default: error()

}

Martin Odersky, LAMP/DI

Translation from regular languages to
program code (2)

Assumptions :
one symbol /ookahead, stored in sym.
next () reads next symbol info sym.

error () quits with an error message.
first (exp) iS the set of start symbols of exp.

The given syntax is assumed to be left-parsable (or :
deterministic).

Martin Odersky, LAMP/DI

Translation from regular languages to
program code (3)

This means :
K Condition
term; | ... | term, | The terms do not have any common start
symbols.
fact, ... fact, if fact; contains the empty sequence then

fact; and fact;,; do not have any common
start symbols.

{exp}, [exp] if exp contains the empty sequence then
the set of start symbols of exp may not
contain any symbol that can also follow it.

Martin Odersky, LAMP/DI

Example : A Scanner for Identifiers

void ident () {
if (isLetter(ch)) next(); else error();
while (isLetterOrDigit(ch)) {
switch (ch) {

case 'a': ... case 'z':
case 'A': ... case 'Z': letter(); break;
case '0': ... case '9': digit(); break;
}
}}
where

boolean isLetter(char ch) {
return
'a' <= ch & ch <= 'z' || 'A' <= ch && ch <= 'Z ’
}

boolean isDigit(char ch) {
return '0' <= ch && ch <= '9';

}

boolean isLetterOrDigit(char ch) {
return isLetter(ch) || isDigit(ch);

}

Martin Odersky, LAMP/DI

void letter() {
switch (ch) {

case 'a': if (ch

case 'Z': if (ch

}
void digit() {
switch (ch) {

case '0': if (ch

case '9': if (ch

}

or, a little more streamlined:

void ident () {

if ('a' <= ch
'A' <= ch
next();

else error();

while ('a' <=

'A' <=

0" <=
next();

&&
&&

ch
ch
ch

ch
ch

&&
&&
&&

a') next(); else error();

'Z') next(); else error();

'0') next(); else error();

'9') next(); else error();

ch
ch
ch

Martin Odersky, LAMP/DI

The Task of a Lexical Analyzer

* The basic action of a lexical analyzer is to read some part of
the input and to return a token:

Token sym;
void nextSym () {
"skip white space and assign next token to sym"

}

- Whitespace can be

- blank character, tabulator, newline
- more general: any character <= " °
- comments: any sequence of characters enclosed in /* ... */.

- A token consists of a token class and possibly some additional
information.

Martin Odersky, LAMP/DI 10

Whitespace and Tokens

- Token classes

IDENT
NUMBER
FLOAT
STRING
MODULE
VOID
LPAREN
RPAREN
LBRACE
RBRACE
SEMICOLON
EOF

foo, main,
0, 123, 1000
0.5 1.0e+3

", "a", "**x* error"
module

void

(

)

{

}

7

\uFFFF (i.e. (char)-1)

* Token classes are represented as int's in Java.

Martin Odersky, LAMP/DI

11

Example Run of a Lexical Analyzer

* For the following JO program

module M {
void main () {
println ("hello world\n");

}
}

- The lexical analyzer should return:

MODULE IDENT(M) VOID IDENT(main) LPAREN
RPAREN LBRACE IDENT(printin) LPAREN
STRING("hello world\n") RPAREN SEMICOLON
RBRACE RBRACE EOF

Martin Odersky, LAMP/DI

12

The Interface of a Lexical Analyzer

class Scanner {
/** Constructor */

Scanner (InputStream in)

/** The symbol read last */
int sym;

/** The symbol's character representation */
String chars;

/** Read next token into sym and chars */
void nextSym ()

/** Close input stream */
void close()

Martin Odersky, LAMP/DI

13

Lexical syntax of EBNF

The syntax of EBNF lexemes :

symbol = {blank}
(identifier | literal |
RN A R
Identifier = letter {letter | digit}.
literal = "\"" {stringchar} "\" ».
stringchar = escapechar | plainchar.
escapechar = "\\" char.
plainchar = charNoQuote.

Martin Odersky, LAMP/DI

| ll.])'

14

EBNF symbol definition

package ebnf;

interface Symbols {

static final int

ERROR =
EOF =
LITERAL =
RPAREN
RBRACK
RBRACE
EQL

}

Java notes:

0,
ERROR
IDENT
LPAREN
LBRACK
LBRACE
BAR

+1,
+1,
+1,
+1,
+1,
+1,

IDENT
LPAREN
LBRACK
LBRACE
BAR
PERIOD

EOF +1,
LITERAL+1,
RPAREN +1,
RBRACK +1,
RBRACE +1,
EQL +1;

+ Symbols kept in an interface which can be « inherited » by classes
needing access to them.

+ +1 trick compensates for lack of enums in Java.

Martin Odersky, LAMP/DI 15

EBNF Scanner (1)

package ebnf; public static void error(String msg) {
import java.io.*; System.out.println(
)) "*x** error: "+msg);
class Scanner implements /*imports*/ System.exit (-1);
Symbols { }
/xx #he.symbol recognized last */ /** print current character and read
public int sym; next character */
/** if that symbol was an identifier private void nextCh() ({
or a literal, it's string System.out.print(ch);
representation */ try {
public String chars; ch = (char)in.read();
} catch (IOException ex) {
/** the character stream being tokenized error("read failure: " +
*/ ex.toString());
private InputStream in; }
/** the next unconsumed character */ }
private char ch; /** read next symbol*/
/** a buffer for assembling strings */ publfc void nex?s¥m() {
private StringBuffer buf = thle (ch <=) nextCh();
new StringBuffer(); switch SCP) { D
case 'a': . . . case'z':
/** the end of file character */ case 'A': . . . case'Z':
private final char eofCh = (char) -1 buf.setLength(0);
buf.append(ch); nextCh();
/% constructor */) while ('a' <= ch && ch <= 'z' ||
publfc §cann?r(1nputStream in) { 'A' <= ch & ch <= '2' ||
this.in = in; '0' <= ch & ch <= '9') {
nextCh(); } buf.append(ch); nextCh();}
Martin Odersky, LAMP/DI 16

EBNF Scanner (2)

sym = IDENT;
chars = buf.toString();

break;
case '\"':

nextCh();

buf.setLength(0);

while (' ' <= ch && ch != eofCh &&

ch != "\"") {

if (ch == '\\') nextCh();
buf.append(ch); nextCh();

}

if (ch == '"\"') nextCh();

else

error("unclosed string literal");
sym = LITERAL;
chars = buf.toString();

break;
case '(':

sym = LPAREN; nextCh(); break;
case ')':

sym = RPAREN; nextCh(); break;
case '[':

sym = LBRACK; nextCh(); break;
case ']':

sym = LBRACK; nextCh(); break;
case '{':

sym = LBRACE; nextCh(); break;
case '}':

sym = LBRACE; nextCh(); break;

case '|':

sym = BAR; nextCh(); break;
case '=':

sym = EQL; nextCh(); break;
case '.':

sym = PERIOD; nextCh(); break;
case eofCh:
sym = EOF; break;
default:
error("illegal character: " + ch +
"(" + (int)ch + ")");
}
}

/** the string representation of a symbol*/
public static String representation
(int sym) {
switch (sym) {
case ERROR
case EOF
case IDENT
case LITERAL
case LPAREN
case RPAREN

return "<error>";
return "<eof>";
return "identifier";
return "literal";
return " ('";

return "7)'";

default ¢ return "<unknown>"; }

}

public void close() throws IOException {
in.close(); }

Martin Odersky, LAMP/DI 17

A Testbed for the EBNF Scanner

package ebnf;
import java.io.*;
class ScannerTest implements Symbols {
static public void main(String[] args) {
try {
Scanner s = new Scanner(new FileInputStream(args[0]));
Ss.nextSym();
while (s.sym != EOF) {
System.out.println("[" + Scanner.representation(s.sym) + "1");
s.nextSym();
}
s.close();
} catch (IOException ex) {
System.out.println(ex);
System.exit(-1);

Martin Odersky, LAMP/DI 18

The Longest Match Rule

* Problem -

The given syntax for EBNF is ambiguous
(why ?)

- Solution :

The scanner matches at each step the longest symbol that
fits the definition

(« longest match rule »)

Martin Odersky, LAMP/DI

19

Generating Lexical Analyzers Automatically

* There is a systematic way to map any regular expression to a
lexical analyzer
* Three steps:

- Regular expression -> (nondeterministic) finite state
automaton (NFA)

- NFA -> deterministic finite state automaton (DFA)
- DFA -> generated scanner program

» - This can be automatized in a scanner generator.

Martin Odersky, LAMP/DI 20

Finite State Automata

» Consist of a finite number of states and transitions
- Transitions are labelled with input symbols

* There is one start state.

* A subset of states are the final states.

- A finite state automaton starts in the start state, and for
each sinput symbol follows an edge labelled with that symbol.

» It accepts an input string iff it ends up in a final state.

- Examples: See blackboard, and Appel Figure 2.3.

Martin Odersky, LAMP/DI 21

(Non)Deterministic Finite State Automata

* In a nondeterministic finite state automaton (NFA), there can

be more than one edge originating from the same node and
labelled with the same label.

* Or there can be a special ¢ edge which can be follwed without
consuming any input symbols.

* By contrast, in a deterministic finite state automaton all

edges leaving some node have pairwise disjoint label sets, and
there are no ¢ labels.

Martin Odersky, LAMP/DI 22

From Regular Expressions to NFA s

- Here is a systematic way to translate any regular expression into an
NFA :

a

€

M N

M| N

{M}

Martin Odersky, LAMP/DI 23

Converting NFA 's to DFA 's

* Problem: Executing an NFA needs backtracking, which is
inefficient.

- Would like to convert to a DFA

- Essential idea: Construct a DFA which has a state for each
possible set of states a given NFA could be in.

- A set of states is final in a DFA if it contains a final NFA
state.

» Since the number of states of an NFA is finite (say N), the

number of possible sets of states is also finite (bounded by
2N)

- Often, the number of reachable sets of states is much
smaller.

Martin Odersky, LAMP/DI

24

Algorithm to Convert NFA ‘s to DFA 's

- See Appel, Section 2.4

- First step: For a set of states S, let closure(S) be the
smallest set of states that is reachable from S using only ¢
transitions.

- - Algorithm to compute closure(S):
T := S
repeat

T' := T ;

for each state s in T

for each edge e from s to some state s’
if (e is labelled with ¢)

T :=T U {s '}

until T T'

Martin Odersky, LAMP/DI 25

- Second step: For a set of states S and an input symbol c, let
DFAedge(S,c) be the set of states that can be reached from
S by following an edge labelled with c.

- - Algorithm to compute DFAedge
T := {}

for each state s in S
for each edge e from s to some state s '
if (e is labelled with c¢)
T := T \ U closure({s'})

Martin Odersky, LAMP/DI

26

DFA Simulation

- Using the machinery developped so far, we can already
simulate a DFA, given an equivalent NFA:

* Let s; be the NFA's start state and let the current input
stream be ¢, ... ¢,. Then the simulation works as follows:

d := closure({s;})
for i := 1 to k do
d := DFAedge (d, c;)

* Manipulating these sets at run time is still very inefficient.

Martin Odersky, LAMP/DI

27

DFA Construction

- DFA states are numbered from O

* O is the error state; the DFA goes into state O iff the NFA
would have blocked because no edge matched the input
symbol.

* Data structures:

states: An array which maps each DFA state to the set of
NFA states it represents.

trans: A matrix of transitions from state numbers to state
numbers

Martin Odersky, LAMP/DI 28

DFA Construction (2)

- Algorithm

states[0] := {} // error state
states[1l] := closure({s_1})
j =0 ; p =2
/* states[0..]j) have been processed completely
states[j..p) are as yet unprocessed
*/
while j < p do
for each input character c
d := DFAedge (states[]], c)
if (d == states[i] for some i < p)
trans[]j, c] := 1
else
states[p] := d
trans[]j, c] :=
p :=p + 1
j =3+ 1

p

Martin Odersky, LAMP/DI

29

Executing a DFA

- First possibility: Represent the DFA by a matrix:
trans: Array [StateIndex, InputSymbol] of StateIndex

- Analyzer loop:

s := 0; // the DFA start state
while ("more input") {
c := "next input character »
s := trans[s, c]

}

Martin Odersky, LAMP/DI

30

Executing a DFA (2)

- Second possibility: Represent DFA by a case statement:

s := 0
while ("more input") {
c := "next input character »
switch (s) {
case 0:
switch (c) {
case 'a':t s := 3
}
}
}

Martin Odersky, LAMP/DI

31

Summary : Lexical Analysis

- Lexical analysis turns input charcaters into tokens.
- Lexical syntax is described by regular expressions.

- We have learned two ways to construct a lexical analyzer
from a grammar for lexical syntax.

- By hand, using a program scheme.
- This works if the grammar is left-parsable.

* By machine, going from regular expression to NFA to DFA.

Martin Odersky, LAMP/DI

32

Scanner generators
- There are a number of generators which generate a lexical
analyzer automatically from a description.

- Description enumerates token classes and gives their syntax
as reqgular expressions.

- Examples: Lex, Javalex.
* Advantages of using a scanner generator?

- Disadvantages?

Martin Odersky, LAMP/DI

33

