
Martin Odersky, LAMP/DI 1

Part I : Overview and Foundations

• Why study compiler construction ?

• The task and structure of a compiler.

• Language and Syntax.

• Formal Languages.

Martin Odersky, LAMP/DI 2

Why Study Compiler Construction ?

There are very few people writing compilers for a living.

So why bother learning about compilers ?

• A competent computer professional knows about high-level
programming and about hardware

• A compiler connects the two.

• Therefore, understanding compilation techniques is essential for
understanding how programming languages and computers hang
together.

• Many applications contain little languages for customization and
flexible control

– Examples : Word macros, scripts for graphics & animation,
data layout descriptions.

Martin Odersky, LAMP/DI 3

Why Study Compiler Construction ? (2)

• Compiler techniques are needed to properly design and implement
these extension languages.

• Data formats are also formal languages. More and more data in
interchangeable format look like a formal language text (e.g. HTML,
XML).

• Compiler techniques are useful for reading, manipulating and writing
data.

• Besides, compilers are excellent examples of large and complex
system

– which can be specified rigorously,

– which can be implemented only by combining theory and practise.

Martin Odersky, LAMP/DI 4

The Task of a Compiler

• The main task of a compiler is to map programs written in a given
source language into a target language.

• Often, the source language is a programming language and the
target language is a machine language.

• Some Exceptions : Source-to-source translators, machine-code
translation, data manipulation in XML.

• Part of the task of a compiler is also to detect whether a given
program conforms to the rules of the source language.

• A specification of a compiler consists of

– A specification of its source- and target languages,

– A specification of a mapping between them.

Martin Odersky, LAMP/DI 5

Languages

• Formally, a language is a set of strings (sentences).

• In practice, each string in a language has a structure which can be
described by a tree.

• Structure rules for sentences are defined by a grammar.

• Example :

– The sentences of a programming language are (legal) programs.

– Programs are sentences of words (or : symbols, tokens); their
structure is given by a context-free grammar.

– Words themselves are sequences of characters; the structure
of which can also be given by a grammar.

Martin Odersky, LAMP/DI 6

Compiler-Structure

Lexical-analysis

Syntax analysis

Type checking

Intermediate code generation

Optimization

Target code generation

Token sequence

Structure tree

Attributed structure tree

Intermediate code sequence

Optimized intermediate code sequence

Target code sequence

• Phases are not necessarily executed one after the other.
• Intermediate data structures do not always exist in their
 entirety at any one time.

Martin Odersky, LAMP/DI 7

Language and Syntax

• Language has structure which is determined by a grammar.

• Example: A correct sentence consists of a subject, followed by a verb.

• This can be expressed by the grammar:

 Sentence = Subject Verb

• Let's complete this with two more productions:

 Subject = "Peter" | "Chelsea"

 Verb = "runs" | "stops"

• Then this defines 4 possible sentences
 Peter runs | Peter stops | Chelsea runs | Chelsea stops

• Usually, languages contain an infinite number of sentences.

Martin Odersky, LAMP/DI 8

Language and Syntax (2)

• An infinite number of sentences can be expressed by a finite
number of productions by using recursion over some symbols.

• Example :
Number = Digit | Digit Number

Digit = "0" | "1" | "2" | "3" | "4" | . . . | "9".

 Generates :
0

12

123

1024

 etc.

Martin Odersky, LAMP/DI 9

Formal Languages

A language is formally defined by :

•A set of terminal symbols.

•A set of non-terminal symbols

•A set of syntactic rules (or : productions)

•A start symbol.

A grammar defines as its language the set of those sequences of
terminal symbols which can be derived from the start symbol by
successive application of productions.

Martin Odersky, LAMP/DI 10

The language of (context-free) grammars

syntax = production syntax | (empty)

production = identifier "=" expression "."

expression = term | expression "|" term

term = factor | term factor | "(empty)"

factor = identifier | string

identifier = letter | identifier letter | identifier digit

string = "\"" stringchars "\""

stringchars = stringchars stringchar | (empty)

stringchar = escapechar | plainchar

escapechar = "\\" char

plainchar = charNoQuote

char = «any printable character».

charNoQuote = «any printable character except `"'.»

Martin Odersky, LAMP/DI 11

The Language of (context-free) Grammars (2)

• This was originally developed by J. Backus and P. Naur for the
definition of Algol 60.

• That ’s why it ’s commonly called Backus-Naur form, or BNF.

• Exercise : Determine startsymbol, terminal symbols and
nonterminals for this grammar.

Martin Odersky, LAMP/DI 12

Extended Backus Naur Form

Grammars can often be simplified and shortened by using two more
constructs :

• {x} expresses repetition: zero, one or more occurrences of x.

• [x] expresses option: zero or one occurrences of x.

The resulting formalism is called extended Backus-Naur form, or
EBNF. It ’s syntax is:

Martin Odersky, LAMP/DI 13

Extended Backus Naur Form (2)

syntax = {production}

production = identifier "=" expression "."

expression = term {"|" term}

term = {factor}

factor = identifier
 | string

 | "(" expression ")"
 | "[" expression "]"
 | "{" expression "}"

identifier = letter { letter | digit }

string = "\"" {stringchar} "\"

(rest as for BNF)

Exercise : Write the grammar for (possibly signed) integer numbers
 in - BNF, - EBNF.

